Zewde, Kidus
Can Multi-modal (reasoning) LLMs work as deepfake detectors?
Ren, Simiao, Yao, Yao, Zewde, Kidus, Liang, Zisheng, Tsang, null, Ng, null, Cheng, Ning-Yau, Zhan, Xiaoou, Liu, Qinzhe, Chen, Yifei, Xu, Hengwei
Deepfake detection remains a critical challenge in the era of advanced generative models, particularly as synthetic media becomes more sophisticated. In this study, we explore the potential of state of the art multi-modal (reasoning) large language models (LLMs) for deepfake image detection such as (OpenAI O1/4o, Gemini thinking Flash 2, Deepseek Janus, Grok 3, llama 3.2, Qwen 2/2.5 VL, Mistral Pixtral, Claude 3.5/3.7 sonnet) . We benchmark 12 latest multi-modal LLMs against traditional deepfake detection methods across multiple datasets, including recently published real-world deepfake imagery. To enhance performance, we employ prompt tuning and conduct an in-depth analysis of the models' reasoning pathways to identify key contributing factors in their decision-making process. Our findings indicate that best multi-modal LLMs achieve competitive performance with promising generalization ability with zero shot, even surpass traditional deepfake detection pipelines in out-of-distribution datasets while the rest of the LLM families performs extremely disappointing with some worse than random guess. Furthermore, we found newer model version and reasoning capabilities does not contribute to performance in such niche tasks of deepfake detection while model size do help in some cases. This study highlights the potential of integrating multi-modal reasoning in future deepfake detection frameworks and provides insights into model interpretability for robustness in real-world scenarios.
Do Deepfake Detectors Work in Reality?
Ren, Simiao, Xu, Hengwei, Ng, Tsang, Zewde, Kidus, Jiang, Shengkai, Desai, Ramini, Patil, Disha, Cheng, Ning-Yau, Zhou, Yining, Muthukrishnan, Ragavi
Deepfakes, particularly those involving faceswap-based manipulations, have sparked significant societal concern due to their increasing realism and potential for misuse. Despite rapid advancements in generative models, detection methods have not kept pace, creating a critical gap in defense strategies. This disparity is further amplified by the disconnect between academic research and real-world applications, which often prioritize different objectives and evaluation criteria. In this study, we take a pivotal step toward bridging this gap by presenting a novel observation: the post-processing step of super-resolution, commonly employed in real-world scenarios, substantially undermines the effectiveness of existing deepfake detection methods. To substantiate this claim, we introduce and publish the first real-world faceswap dataset, collected from popular online faceswap platforms. We then qualitatively evaluate the performance of state-of-the-art deepfake detectors on real-world deepfakes, revealing that their accuracy approaches the level of random guessing. Furthermore, we quantitatively demonstrate the significant performance degradation caused by common post-processing techniques. By addressing this overlooked challenge, our study underscores a critical avenue for enhancing the robustness and practical applicability of deepfake detection methods in real-world settings.