Not enough data to create a plot.
Try a different view from the menu above.
Zeppelzauer, Matthias
Machine Learning in Biomechanics: Key Applications and Limitations in Walking, Running, and Sports Movements
Dindorf, Carlo, Horst, Fabian, Slijepčević, Djordje, Dumphart, Bernhard, Dully, Jonas, Zeppelzauer, Matthias, Horsak, Brian, Fröhlich, Michael
This chapter provides an overview of recent and promising Machine Learning applications, i.e. pose estimation, feature estimation, event detection, data exploration & clustering, and automated classification, in gait (walking and running) and sports biomechanics. It explores the potential of Machine Learning methods to address challenges in biomechanical workflows, highlights central limitations, i.e. data and annotation availability and explainability, that need to be addressed, and emphasises the importance of interdisciplinary approaches for fully harnessing the potential of Machine Learning in gait and sports biomechanics.
Analysis of Hybrid Compositions in Animation Film with Weakly Supervised Learning
Portos, Mónica Apellaniz, Labadie-Tamayo, Roberto, Stemmler, Claudius, Feyersinger, Erwin, Babic, Andreas, Bruckner, Franziska, Öhner, Vrääth, Zeppelzauer, Matthias
We present an approach for the analysis of hybrid visual compositions in animation in the domain of ephemeral film. We combine ideas from semi-supervised and weakly supervised learning to train a model that can segment hybrid compositions without requiring pre-labeled segmentation masks. We evaluate our approach on a set of ephemeral films from 13 film archives. Results demonstrate that the proposed learning strategy yields a performance close to a fully supervised baseline. On a qualitative level the performed analysis provides interesting insights on hybrid compositions in animation film.
Trustworthy Visual Analytics in Clinical Gait Analysis: A Case Study for Patients with Cerebral Palsy
Rind, Alexander, Slijepčević, Djordje, Zeppelzauer, Matthias, Unglaube, Fabian, Kranzl, Andreas, Horsak, Brian
Three-dimensional clinical gait analysis is essential for selecting optimal treatment interventions for patients with cerebral palsy (CP), but generates a large amount of time series data. For the automated analysis of these data, machine learning approaches yield promising results. However, due to their black-box nature, such approaches are often mistrusted by clinicians. We propose gaitXplorer, a visual analytics approach for the classification of CP-related gait patterns that integrates Grad-CAM, a well-established explainable artificial intelligence algorithm, for explanations of machine learning classifications. Regions of high relevance for classification are highlighted in the interactive visual interface. The approach is evaluated in a case study with two clinical gait experts. They inspected the explanations for a sample of eight patients using the visual interface and expressed which relevance scores they found trustworthy and which they found suspicious. Overall, the clinicians gave positive feedback on the approach as it allowed them a better understanding of which regions in the data were relevant for the classification.
Explaining YOLO: Leveraging Grad-CAM to Explain Object Detections
Kirchknopf, Armin, Slijepcevic, Djordje, Wunderlich, Ilkay, Breiter, Michael, Traxler, Johannes, Zeppelzauer, Matthias
We investigate the problem of explainability for visual object detectors. Specifically, we demonstrate on the example of the YOLO object detector how to integrate Grad-CAM into the model architecture and analyze the results. We show how to compute attribution-based explanations for individual detections and find that the normalization of the results has a great impact on their interpretation.
Real Estate Attribute Prediction from Multiple Visual Modalities with Missing Data
Stumpe, Eric, Despotovic, Miroslav, Zhang, Zedong, Zeppelzauer, Matthias
The assessment and valuation of real estate requires large datasets with real estate information. Unfortunately, real estate databases are usually sparse in practice, i.e., not for each property every important attribute is available. In this paper, we study the potential of predicting high-level real estate attributes from visual data, specifically from two visual modalities, namely indoor (interior) and outdoor (facade) photos. We design three models using different multimodal fusion strategies and evaluate them for three different use cases. Thereby, a particular challenge is to handle missing modalities. We evaluate different fusion strategies, present baselines for the different prediction tasks, and find that enriching the training data with additional incomplete samples can lead to an improvement in prediction accuracy. Furthermore, the fusion of information from indoor and outdoor photos results in a performance boost of up to 5% in Macro F1-score.
Explaining machine learning models for age classification in human gait analysis
Slijepcevic, Djordje, Horst, Fabian, Simak, Marvin, Lapuschkin, Sebastian, Raberger, Anna-Maria, Samek, Wojciech, Breiteneder, Christian, Schöllhorn, Wolfgang I., Zeppelzauer, Matthias, Horsak, Brian
Machine learning (ML) models have proven effective in classifying gait analysis data, e.g., binary classification of young vs. older adults. ML models, however, lack in providing human understandable explanations for their predictions. This "black-box" behavior impedes the understanding of which input features the model predictions are based on. We investigated an Explainable Artificial Intelligence method, i.e., Layer-wise Relevance Propagation (LRP), for gait analysis data. The research question was: Which input features are used by ML models to classify age-related differences in walking patterns? We utilized a subset of the AIST Gait Database 2019 containing five bilateral ground reaction force (GRF) recordings per person during barefoot walking of healthy participants. Each input signal was min-max normalized before concatenation and fed into a Convolutional Neural Network (CNN). Participants were divided into three age groups: young (20-39 years), middle-aged (40-64 years), and older (65-79 years) adults. The classification accuracy and relevance scores (derived using LRP) were averaged over a stratified ten-fold cross-validation. The mean classification accuracy of 60.1% was clearly higher than the zero-rule baseline of 37.3%. The confusion matrix shows that the CNN distinguished younger and older adults well, but had difficulty modeling the middle-aged adults.
Explaining automated gender classification of human gait
Horst, Fabian, Slijepcevic, Djordje, Zeppelzauer, Matthias, Raberger, Anna-Maria, Lapuschkin, Sebastian, Samek, Wojciech, Schöllhorn, Wolfgang I., Breiteneder, Christian, Horsak, Brian
State-of-the-art machine learning (ML) models are highly effective in classifying gait analysis data, however, they lack in providing explanations for their predictions. This "black-box" characteristic makes it impossible to understand on which input patterns, ML models base their predictions. The present study investigates whether Explainable Artificial Intelligence methods, i.e., Layer-wise Relevance Propagation (LRP), can be useful to enhance the explainability of ML predictions in gait classification. The research question was: Which input patterns are most relevant for an automated gender classification model and do they correspond to characteristics identified in the literature? We utilized a subset of the GAITREC dataset containing five bilateral ground reaction force (GRF) recordings per person during barefoot walking of 62 healthy participants: 34 females and 28 males. Each input signal (right and left side) was min-max normalized before concatenation and fed into a multi-layer Convolutional Neural Network (CNN). The classification accuracy was obtained over a stratified ten-fold cross-validation. To identify gender-specific patterns, the input relevance scores were derived using LRP. The mean classification accuracy of the CNN with 83.3% showed a clear superiority over the zero-rule baseline of 54.8%.
Bounded logit attention: Learning to explain image classifiers
Baumhauer, Thomas, Slijepcevic, Djordje, Zeppelzauer, Matthias
Explainable artificial intelligence is the attempt to elucidate the workings of systems too complex to be directly accessible to human cognition through suitable sideinformation referred to as "explanations". We present a trainable explanation module for convolutional image classifiers we call bounded logit attention (BLA). The BLA module learns to select a subset of the convolutional feature map for each input instance, which then serves as an explanation for the classifier's prediction. BLA overcomes several limitations of the instancewise feature selection method "learning to explain" (L2X) introduced by Chen et al. (2018): 1) BLA scales to real-world sized image classification problems, and 2) BLA offers a canonical way to learn explanations of variable size. Due to its modularity BLA lends itself to transfer learning setups and can also be employed as a post-hoc add-on to trained classifiers. Beyond explainability, BLA may serve as a general purpose method for differentiable approximation of subset selection. In a user study we find that BLA explanations are preferred over explanations generated by the popular (Grad-)CAM method (Zhou et al., 2016; Selvaraju et al., 2017).
Persistence Bag-of-Words for Topological Data Analysis
Zieliński, Bartosz, Lipiński, Michał, Juda, Mateusz, Zeppelzauer, Matthias, Dłotko, Paweł
Persistent homology (PH) is a rigorous mathematical theory that provides a robust descriptor of data in the form of persistence diagrams (PDs). PDs are compact 2D representations formed by multisets of points. Their variable size makes them, however, difficult to combine with typical machine learning workflows. In this paper, we introduce persistence bag-of-words, which is a novel, expressive and discriminative vectorized representation of PDs for topological data analysis. It represents PDs in a convenient way for machine learning and statistical analysis and has a number of favorable practical and theoretical properties like 1-Wasserstein stability. We evaluate our representation on several heterogeneous datasets and show its high discriminative power. Our approach achieves state-of-the-art performance and even beyond in much less time than alternative approaches. Thereby, it facilitates the topological analysis of large-scale data sets in future.
Persistence Codebooks for Topological Data Analysis
Zielinski, Bartosz, Juda, Mateusz, Zeppelzauer, Matthias
Topological data analysis, such as persistent homology has shown beneficial properties for machine learning in many tasks. Topological representations, such as the persistence diagram (PD), however, have a complex structure (multiset of intervals) which makes it difficult to combine with typical machine learning workflows. We present novel compact fixed-size vectorial representations of PDs based on clustering and bag of words encodings that cope well with the inherent sparsity of PDs. Our novel representations outperform state-of-the-art approaches from topological data analysis and are computationally more efficient.