Zeng, Huaye
ScholarCopilot: Training Large Language Models for Academic Writing with Accurate Citations
Wang, Yubo, Ma, Xueguang, Nie, Ping, Zeng, Huaye, Lyu, Zhiheng, Zhang, Yuxuan, Schneider, Benjamin, Lu, Yi, Yue, Xiang, Chen, Wenhu
Academic writing requires both coherent text generation and precise citation of relevant literature. Although recent Retrieval-Augmented Generation (RAG) systems have significantly improved factual accuracy in general-purpose text generation, their ability to support professional academic writing remains limited. In this work, we introduce ScholarCopilot, a unified framework designed to enhance existing large language models for generating professional academic articles with accurate and contextually relevant citations. ScholarCopilot dynamically determines when to retrieve scholarly references by generating a retrieval token [RET], which is then used to query a citation database. The retrieved references are fed into the model to augment the generation process. We jointly optimize both the generation and citation tasks within a single framework to improve efficiency. Our model is built upon Qwen-2.5-7B and trained on 500K papers from arXiv. It achieves a top-1 retrieval accuracy of 40.1% on our evaluation dataset, outperforming baselines such as E5-Mistral-7B-Instruct (15.0%) and BM25 (9.8%). On a dataset of 1,000 academic writing samples, ScholarCopilot scores 16.2/25 in generation quality -- measured across relevance, coherence, academic rigor, completeness, and innovation -- significantly surpassing all existing models, including much larger ones like the Retrieval-Augmented Qwen2.5-72B-Instruct. Human studies further demonstrate that ScholarCopilot, despite being a 7B model, significantly outperforms ChatGPT, achieving 100% preference in citation quality and over 70% in overall usefulness.
ACECODER: Acing Coder RL via Automated Test-Case Synthesis
Zeng, Huaye, Jiang, Dongfu, Wang, Haozhe, Nie, Ping, Chen, Xiaotong, Chen, Wenhu
Most progress in recent coder models has been driven by supervised fine-tuning (SFT), while the potential of reinforcement learning (RL) remains largely unexplored, primarily due to the lack of reliable reward data/model in the code domain. In this paper, we address this challenge by leveraging automated large-scale test-case synthesis to enhance code model training. Specifically, we design a pipeline that generates extensive (question, test-cases) pairs from existing code data. Using these test cases, we construct preference pairs based on pass rates over sampled programs to train reward models with Bradley-Terry loss. It shows an average of 10-point improvement for Llama-3.1-8B-Ins and 5-point improvement for Qwen2.5-Coder-7B-Ins through best-of-32 sampling, making the 7B model on par with 236B DeepSeek-V2.5. Furthermore, we conduct reinforcement learning with both reward models and test-case pass rewards, leading to consistent improvements across HumanEval, MBPP, BigCodeBench, and LiveCodeBench (V4). Notably, we follow the R1-style training to start from Qwen2.5-Coder-base directly and show that our RL training can improve model on HumanEval-plus by over 25\% and MBPP-plus by 6\% for merely 80 optimization steps. We believe our results highlight the huge potential of reinforcement learning in coder models.
MANTIS: Interleaved Multi-Image Instruction Tuning
Jiang, Dongfu, He, Xuan, Zeng, Huaye, Wei, Cong, Ku, Max, Liu, Qian, Chen, Wenhu
Large multimodal models (LMMs) have shown great results in single-image vision language tasks. However, their abilities to solve multi-image visual language tasks is yet to be improved. The existing LMMs like OpenFlamingo, Emu2, Idefics gain their multi-image ability through pre-training on hundreds of millions of noisy interleaved image-text data from the web, which is neither efficient nor effective. In this paper, we aim to build strong multi-image LMMs via instruction tuning with academic-level resources. Therefore, we meticulously construct Mantis-Instruct containing 721K multi-image instruction data to train a family of models Mantis. The instruction tuning empowers Mantis with different multi-image skills like co-reference, comparison, reasoning, and temporal understanding. We evaluate Mantis on five multi-image benchmarks and seven single-image benchmarks. Mantis-SigLIP can achieve SoTA results on all the multi-image benchmarks and beat the strongest multi-image baseline, Idefics2-8B by an average of 11 absolute points. Notably, Idefics2-8B was pre-trained on 140M interleaved multi-image data, which is 200x larger than Mantis-Instruct. We observe that Mantis performs equivalently well on the held-in and held-out benchmarks, which shows its generalization ability. Notably, we found that Mantis can even match the performance of GPT-4V on multi-image benchmarks. We further evaluate Mantis on single-image benchmarks and demonstrate that Mantis also maintains a strong single-image performance on par with CogVLM and Emu2. Our results show that multi-image abilities are not necessarily gained through massive pre-training, instead, it can be gained by the low-cost instruction tuning. Our work provides new perspectives on how to improve LMMs' multi-image abilities.