Goto

Collaborating Authors

 Zeng, Cheng


NTP-INT: Network Traffic Prediction-Driven In-band Network Telemetry for High-load Switches

arXiv.org Artificial Intelligence

In-band network telemetry (INT) is essential to network management due to its real-time visibility. However, because of the rapid increase in network devices and services, it has become crucial to have targeted access to detailed network information in a dynamic network environment. This paper proposes an intelligent network telemetry system called NTP-INT to obtain more fine-grained network information on high-load switches. Specifically, NTP-INT consists of three modules: network traffic prediction module, network pruning module, and probe path planning module. Firstly, the network traffic prediction module adopts a Multi-Temporal Graph Neural Network (MTGNN) to predict future network traffic and identify high-load switches. Then, we design the network pruning algorithm to generate a subnetwork covering all high-load switches to reduce the complexity of probe path planning. Finally, the probe path planning module uses an attention-mechanism-based deep reinforcement learning (DEL) model to plan efficient probe paths in the network slice. The experimental results demonstrate that NTP-INT can acquire more precise network information on high-load switches while decreasing the control overhead by 50\%.


Flat U-Net: An Efficient Ultralightweight Model for Solar Filament Segmentation in Full-disk H$\alpha$ Images

arXiv.org Artificial Intelligence

Solar filaments are one of the most prominent features observed on the Sun, and their evolutions are closely related to various solar activities, such as flares and coronal mass ejections. Real-time automated identification of solar filaments is the most effective approach to managing large volumes of data. Existing models of filament identification are characterized by large parameter sizes and high computational costs, which limit their future applications in highly integrated and intelligent ground-based and space-borne observation devices. Consequently, the design of more lightweight models will facilitate the advancement of intelligent observation equipment. In this study, we introduce Flat U-Net, a novel and highly efficient ultralightweight model that incorporates simplified channel attention (SCA) and channel self-attention (CSA) convolutional blocks for the segmentation of solar filaments in full-disk H$\alpha$ images. Feature information from each network layer is fully extracted to reconstruct interchannel feature representations. Each block effectively optimizes the channel features from the previous layer, significantly reducing parameters. The network architecture presents an elegant flattening, improving its efficiency, and simplifying the overall design. Experimental validation demonstrates that a model composed of pure SCAs achieves a precision of approximately 0.93, with dice similarity coefficient (DSC) and recall rates of 0.76 and 0.64, respectively, significantly outperforming the classical U-Net. Introducing a certain number of CSA blocks improves the DSC and recall rates to 0.82 and 0.74, respectively, which demonstrates a pronounced advantage, particularly concerning model weight size and detection effectiveness. The data set, models, and code are available as open-source resources.


Leveraging Large Language Model as Simulated Patients for Clinical Education

arXiv.org Artificial Intelligence

Simulated Patients (SPs) play a crucial role in clinical medical education by providing realistic scenarios for student practice. However, the high cost of training and hiring qualified SPs, along with the heavy workload and potential risks they face in consistently portraying actual patients, limit students' access to this type of clinical training. Consequently, the integration of computer program-based simulated patients has emerged as a valuable educational tool in recent years. With the rapid development of Large Language Models (LLMs), their exceptional capabilities in conversational artificial intelligence and role-playing have been demonstrated, making them a feasible option for implementing Virtual Simulated Patient (VSP). In this paper, we present an integrated model-agnostic framework called CureFun that harnesses the potential of LLMs in clinical medical education. This framework facilitates natural conversations between students and simulated patients, evaluates their dialogue, and provides suggestions to enhance students' clinical inquiry skills. Through comprehensive evaluations, our approach demonstrates more authentic and professional SP-scenario dialogue flows compared to other LLM-based chatbots, thus proving its proficiency in simulating patients. Additionally, leveraging CureFun's evaluation ability, we assess several medical LLMs and discuss the possibilities and limitations of using LLMs as virtual doctors from the perspective of their diagnostic abilities.


Analyze the Robustness of Classifiers under Label Noise

arXiv.org Machine Learning

This study explores the robustness of label noise classifiers, aiming to enhance model resilience against noisy data in complex real-world scenarios. Label noise in supervised learning, characterized by erroneous or imprecise labels, significantly impairs model performance. This research focuses on the increasingly pertinent issue of label noise's impact on practical applications. Addressing the prevalent challenge of inaccurate training data labels, we integrate adversarial machine learning (AML) and importance reweighting techniques. Our approach involves employing convolutional neural networks (CNN) as the foundational model, with an emphasis on parameter adjustment for individual training samples. This strategy is designed to heighten the model's focus on samples critically influencing performance.


Analyze the robustness of three NMF algorithms (Robust NMF with L1 norm, L2-1 norm NMF, L2 NMF)

arXiv.org Artificial Intelligence

Non-negative matrix factorization (NMF) and its variants have been widely employed in clustering and classification tasks (Long, & Jian , 2021). However, noises can seriously affect the results of our experiments. Our research is dedicated to investigating the noise robustness of non-negative matrix factorization (NMF) in the face of different types of noise. Specifically, we adopt three different NMF algorithms, namely L1 NMF, L2 NMF, and L21 NMF, and use the ORL and YaleB data sets to simulate a series of experiments with salt-and-pepper noise and Block-occlusion noise separately. In the experiment, we use a variety of evaluation indicators, including root mean square error (RMSE), accuracy (ACC), and normalized mutual information (NMI), to evaluate the performance of different NMF algorithms in noisy environments. Through these indicators, we quantify the resistance of NMF algorithms to noise and gain insights into their feasibility in practical applications.


FedTADBench: Federated Time-Series Anomaly Detection Benchmark

arXiv.org Artificial Intelligence

Time series anomaly detection strives to uncover potential abnormal behaviors and patterns from temporal data, and has fundamental significance in diverse application scenarios. Constructing an effective detection model usually requires adequate training data stored in a centralized manner, however, this requirement sometimes could not be satisfied in realistic scenarios. As a prevailing approach to address the above problem, federated learning has demonstrated its power to cooperate with the distributed data available while protecting the privacy of data providers. However, it is still unclear that how existing time series anomaly detection algorithms perform with decentralized data storage and privacy protection through federated learning. To study this, we conduct a federated time series anomaly detection benchmark, named FedTADBench, which involves five representative time series anomaly detection algorithms and four popular federated learning methods. We would like to answer the following questions: (1)How is the performance of time series anomaly detection algorithms when meeting federated learning? (2) Which federated learning method is the most appropriate one for time series anomaly detection? (3) How do federated time series anomaly detection approaches perform on different partitions of data in clients? Numbers of results as well as corresponding analysis are provided from extensive experiments with various settings. The source code of our benchmark is publicly available at https://github.com/fanxingliu2020/FedTADBench.


Many could be better than all: A novel instance-oriented algorithm for Multi-modal Multi-label problem

arXiv.org Machine Learning

With the emergence of diverse data collection techniques, objects in real applications can be represented as multi-modal features. What's more, objects may have multiple semantic meanings. Multi-modal and Multi-label (MMML) problem becomes a universal phenomenon. The quality of data collected from different channels are inconsistent and some of them may not benefit for prediction. In real life, not all the modalities are needed for prediction. As a result, we propose a novel instance-oriented Multi-modal Classifier Chains (MCC) algorithm for MMML problem, which can make convince prediction with partial modalities. MCC extracts different modalities for different instances in the testing phase. Extensive experiments are performed on one real-world herbs dataset and two public datasets to validate our proposed algorithm, which reveals that it may be better to extract many instead of all of the modalities at hand.


A Logarithmic Barrier Method For Proximal Policy Optimization

arXiv.org Machine Learning

Proximal policy optimization(PPO) [ Schulman et al., 2017 ] has been proposed as a first-order optimization method for reinforcement learning. We should notice that an exterior penalty method is used in it. Often, the minimizers of the exterior penalty functions approach feasibility only in the limits as the penalty parameter grows increasingly large. Therefore, it may result in the low level of sampling efficiency. This method, which we call proximal policy optimization with barrier method (PPO-B), keeps almost all advantageous spheres of PPO such as easy implementation and good generalization. Specifically, a new surrogate objective with interior penalty method is proposed to avoid the defect arose from exterior penalty method. Conclusions can be draw that PPO-B is able to outperform PPO in terms of sampling efficiency since PPO-B achieved clearly better performance on Atari and Mujoco environment than PPO.