Zečević, Matej
Structural Causal Models Reveal Confounder Bias in Linear Program Modelling
Zečević, Matej, Dhami, Devendra Singh, Kersting, Kristian
The recent years have been marked by extended research on adversarial attacks, especially on deep neural networks. With this work we intend on posing and investigating the question of whether the phenomenon might be more general in nature, that is, adversarial-style attacks outside classical classification tasks. Specifically, we investigate optimization problems as they constitute a fundamental part of modern AI research. To this end, we consider the base class of optimizers namely Linear Programs (LPs). On our initial attempt of a na\"ive mapping between the formalism of adversarial examples and LPs, we quickly identify the key ingredients missing for making sense of a reasonable notion of adversarial examples for LPs. Intriguingly, the formalism of Pearl's notion to causality allows for the right description of adversarial like examples for LPs. Characteristically, we show the direct influence of the Structural Causal Model (SCM) onto the subsequent LP optimization, which ultimately exposes a notion of confounding in LPs (inherited by said SCM) that allows for adversarial-style attacks. We provide both the general proof formally alongside existential proofs of such intriguing LP-parameterizations based on SCM for three combinatorial problems, namely Linear Assignment, Shortest Path and a real world problem of energy systems.
Do Not Marginalize Mechanisms, Rather Consolidate!
Willig, Moritz, Zečević, Matej, Dhami, Devendra Singh, Kersting, Kristian
Structural causal models (SCMs) are a powerful tool for understanding the complex causal relationships that underlie many real-world systems. As these systems grow in size, the number of variables and complexity of interactions between them does, too. Thus, becoming convoluted and difficult to analyze. This is particularly true in the context of machine learning and artificial intelligence, where an ever increasing amount of data demands for new methods to simplify and compress large scale SCM. While methods for marginalizing and abstracting SCM already exist today, they may destroy the causality of the marginalized model. To alleviate this, we introduce the concept of consolidating causal mechanisms to transform large-scale SCM while preserving consistent interventional behaviour. We show consolidation is a powerful method for simplifying SCM, discuss reduction of computational complexity and give a perspective on generalizing abilities of consolidated SCM.
Causal Parrots: Large Language Models May Talk Causality But Are Not Causal
Zečević, Matej, Willig, Moritz, Dhami, Devendra Singh, Kersting, Kristian
Some argue scale is all what is needed to achieve AI, covering even causal models. We make it clear that large language models (LLMs) cannot be causal and give reason onto why sometimes we might feel otherwise. To this end, we define and exemplify a new subgroup of Structural Causal Model (SCM) that we call meta SCM which encode causal facts about other SCM within their variables. We conjecture that in the cases where LLM succeed in doing causal inference, underlying was a respective meta SCM that exposed correlations between causal facts in natural language on whose data the LLM was ultimately trained. If our hypothesis holds true, then this would imply that LLMs are like parrots in that they simply recite the causal knowledge embedded in the data. Our empirical analysis provides favoring evidence that current LLMs are even weak `causal parrots.'
Continual Causal Abstractions
Zečević, Matej, Willig, Moritz, Seng, Jonas, Busch, Florian Peter
This short paper discusses continually updated causal abstractions as a potential direction of future research. The key idea is to revise the existing level of causal abstraction to a different level of detail that is both consistent with the history of observed data and more effective in solving a given task.
On How AI Needs to Change to Advance the Science of Drug Discovery
Didi, Kieran, Zečević, Matej
Research around AI for Science has seen significant success since the rise of deep learning models over the past decade, even with longstanding challenges such as protein structure prediction. However, this fast development inevitably made their flaws apparent -- especially in domains of reasoning where understanding the cause-effect relationship is important. One such domain is drug discovery, in which such understanding is required to make sense of data otherwise plagued by spurious correlations. Said spuriousness only becomes worse with the ongoing trend of ever-increasing amounts of data in the life sciences and thereby restricts researchers in their ability to understand disease biology and create better therapeutics. Therefore, to advance the science of drug discovery with AI it is becoming necessary to formulate the key problems in the language of causality, which allows the explication of modelling assumptions needed for identifying true cause-effect relationships. In this attention paper, we present causal drug discovery as the craft of creating models that ground the process of drug discovery in causal reasoning.
Pearl Causal Hierarchy on Image Data: Intricacies & Challenges
Zečević, Matej, Willig, Moritz, Dhami, Devendra Singh, Kersting, Kristian
Many researchers have voiced their support towards Pearl's counterfactual theory of causation as a stepping stone for AI/ML research's ultimate goal of intelligent systems. As in any other growing subfield, patience seems to be a virtue since significant progress on integrating notions from both fields takes time, yet, major challenges such as the lack of ground truth benchmarks or a unified perspective on classical problems such as computer vision seem to hinder the momentum of the research movement. This present work exemplifies how the Pearl Causal Hierarchy (PCH) can be understood on image data by providing insights on several intricacies but also challenges that naturally arise when applying key concepts from Pearlian causality to the study of image data.
Can Foundation Models Talk Causality?
Willig, Moritz, Zečević, Matej, Dhami, Devendra Singh, Kersting, Kristian
Foundation models are subject to an ongoing heated debate, leaving open the question of progress towards AGI and dividing the community into two camps: the ones who see the arguably impressive results as evidence to the scaling hypothesis, and the others who are worried about the lack of interpretability and reasoning capabilities. By investigating to which extent causal representations might be captured by these large scale language models, we make a humble efforts towards resolving the ongoing philosophical conflicts.
Towards a Solution to Bongard Problems: A Causal Approach
Youssef, Salahedine, Zečević, Matej, Dhami, Devendra Singh, Kersting, Kristian
Even though AI has advanced rapidly in recent years displaying success in solving highly complex problems, the class of Bongard Problems (BPs) yet remain largely unsolved by modern ML techniques. In this paper, we propose a new approach in an attempt to not only solve BPs but also extract meaning out of learned representations. This includes the reformulation of the classical BP into a reinforcement learning (RL) setting which will allow the model to gain access to counterfactuals to guide its decisions but also explain its decisions. Since learning meaningful representations in BPs is an essential sub-problem, we further make use of contrastive learning for the extraction of low level features from pixel data. Several experiments have been conducted for analyzing the general BP-RL setup, feature extraction methods and using the best combination for the feature space analysis and its interpretation.
Causal Explanations of Structural Causal Models
Zečević, Matej, Dhami, Devendra Singh, Rothkopf, Constantin A., Kersting, Kristian
In explanatory interactive learning (XIL) the user queries the learner, then the learner explains its answer to the user and finally the loop repeats. XIL is attractive for two reasons, (1) the learner becomes better and (2) the user's trust increases. For both reasons to hold, the learner's explanations must be useful to the user and the user must be allowed to ask useful questions. Ideally, both questions and explanations should be grounded in a causal model since they avoid spurious fallacies. Ultimately, we seem to seek a causal variant of XIL. The question part on the user's end we believe to be solved since the user's mental model can provide the causal model. But how would the learner provide causal explanations? In this work we show that existing explanation methods are not guaranteed to be causal even when provided with a Structural Causal Model (SCM). Specifically, we use the popular, proclaimed causal explanation method CXPlain to illustrate how the generated explanations leave open the question of truly causal explanations. Thus as a step towards causal XIL, we propose a solution to the lack of causal explanations. We solve this problem by deriving from first principles an explanation method that makes full use of a given SCM, which we refer to as SC$\textbf{E}$ ($\textbf{E}$ standing for explanation). Since SCEs make use of structural information, any causal graph learner can now provide human-readable explanations. We conduct several experiments including a user study with 22 participants to investigate the virtue of SCE as causal explanations of SCMs.
On the Tractability of Neural Causal Inference
Zečević, Matej, Dhami, Devendra Singh, Kersting, Kristian
Roth (1996) proved that any form of marginal inference with probabilistic graphical models (e.g. Bayesian Networks) will at least be NP-hard. Introduced and extensively investigated in the past decade, the neural probabilistic circuits known as sum-product network (SPN) offers linear time complexity. On another note, research around neural causal models (NCM) recently gained traction, demanding a tighter integration of causality for machine learning. To this end, we present a theoretical investigation of if, when, how and under what cost tractability occurs for different NCM. We prove that SPN-based causal inference is generally tractable, opposed to standard MLP-based NCM. We further introduce a new tractable NCM-class that is efficient in inference and fully expressive in terms of Pearl's Causal Hierarchy. Our comparative empirical illustration on simulations and standard benchmarks validates our theoretical proofs.