Goto

Collaborating Authors

 Zappella, Luca


End-to-end Learning of Sparse Interventions on Activations to Steer Generation

arXiv.org Artificial Intelligence

The growing use of generative models in daily life calls for efficient mechanisms to control their generation, to e.g., produce safe content or provide users with tools to explore style changes. Ideally, such mechanisms should be cheap, both at train and inference time, while preserving output quality. Recent research has shown that such mechanisms can be obtained by intervening exclusively on model activations, with the goal of correcting distributional differences between activations seen when using prompts from a source vs. a target set (e.g., toxic and non-toxic sentences). While cheap, these fast methods are inherently crude: their maps are tuned locally, not accounting for their impact on downstream layers, resulting in interventions that cause unintended shifts when used out-of-sample. We propose in this work linear end-to-end activation steering (LinEAS), an approach trained with a global loss that accounts simultaneously for all layerwise distributional shifts. In addition to being more robust, the loss used to train LinEAS can be regularized with sparsifying norms, which can automatically carry out neuron and layer selection. Empirically, LinEAS only requires a handful of samples to be effective, and beats similar baselines on toxicity mitigation, while performing on par with far more involved finetuning approaches. We show that LinEAS interventions can be composed, study the impact of sparsity on their performance, and showcase applications in text-to-image diffusions.


Evaluating Gender Bias Transfer between Pre-trained and Prompt-Adapted Language Models

arXiv.org Artificial Intelligence

Large language models (LLMs) are increasingly being adapted to achieve task-specificity for deployment in real-world decision systems. Several previous works have investigated the bias transfer hypothesis (BTH) by studying the effect of the fine-tuning adaptation strategy on model fairness to find that fairness in pre-trained masked language models have limited effect on the fairness of models when adapted using fine-tuning. In this work, we expand the study of BTH to causal models under prompt adaptations, as prompting is an accessible, and compute-efficient way to deploy models in real-world systems. In contrast to previous works, we establish that intrinsic biases in pre-trained Mistral, Falcon and Llama models are strongly correlated (rho >= 0.94) with biases when the same models are zero- and few-shot prompted, using a pronoun co-reference resolution task. Further, we find that bias transfer remains strongly correlated even when LLMs are specifically prompted to exhibit fair or biased behavior (rho >= 0.92), and few-shot length and stereotypical composition are varied (rho >= 0.97). Our findings highlight the importance of ensuring fairness in pre-trained LLMs, especially when they are later used to perform downstream tasks via prompt adaptation.


Controlling Language and Diffusion Models by Transporting Activations

arXiv.org Artificial Intelligence

The increasing capabilities of large generative models and their ever more widespread deployment have raised concerns about their reliability, safety, and potential misuse. To address these issues, recent works have proposed to control model generation by steering model activations in order to effectively induce or prevent the emergence of concepts or behaviors in the generated output. In this paper we introduce Activation Transport (AcT), a general framework to steer activations guided by optimal transport theory that generalizes many previous activation-steering works. AcT is modality-agnostic and provides fine-grained control over the model behavior with negligible computational overhead, while minimally impacting model abilities. We experimentally show the effectiveness and versatility of our approach by addressing key challenges in large language models (LLMs) and text-to-image diffusion models (T2Is). For LLMs, we show that AcT can effectively mitigate toxicity, induce arbitrary concepts, and increase their truthfulness. In T2Is, we show how AcT enables fine-grained style control and concept negation.


Considerations for Distribution Shift Robustness of Diagnostic Models in Healthcare

arXiv.org Machine Learning

We consider robustness to distribution shifts in the context of diagnostic models in healthcare, where the prediction target $Y$, e.g., the presence of a disease, is causally upstream of the observations $X$, e.g., a biomarker. Distribution shifts may occur, for instance, when the training data is collected in a domain with patients having particular demographic characteristics while the model is deployed on patients from a different demographic group. In the domain of applied ML for health, it is common to predict $Y$ from $X$ without considering further information about the patient. However, beyond the direct influence of the disease $Y$ on biomarker $X$, a predictive model may learn to exploit confounding dependencies (or shortcuts) between $X$ and $Y$ that are unstable under certain distribution shifts. In this work, we highlight a data generating mechanism common to healthcare settings and discuss how recent theoretical results from the causality literature can be applied to build robust predictive models. We theoretically show why ignoring covariates as well as common invariant learning approaches will in general not yield robust predictors in the studied setting, while including certain covariates into the prediction model will. In an extensive simulation study, we showcase the robustness (or lack thereof) of different predictors under various data generating processes. Lastly, we analyze the performance of the different approaches using the PTB-XL dataset, a public dataset of annotated ECG recordings.


Whispering Experts: Neural Interventions for Toxicity Mitigation in Language Models

arXiv.org Artificial Intelligence

An important issue with Large Language Models (LLMs) is their undesired ability to generate toxic language. In this work, we show that the neurons responsible for toxicity can be determined by their power to discriminate toxic sentences, and that toxic language can be mitigated by reducing their activation levels proportionally to this power. We propose AUROC adaptation (AurA), an intervention that can be applied to any pre-trained LLM to mitigate toxicity. As the intervention is proportional to the ability of each neuron to discriminate toxic content, it is free of any model-dependent hyperparameters. We show that AurA can achieve up to $2.2 \times$ reduction in toxicity with only a $0.72$ perplexity increase. We also show that AurA is effective with models of different scale (from 1.5B to 40B parameters), and its effectiveness in mitigating toxic language, while preserving common-sense zero-shot abilities, holds across all scales. AurA can be combined with pre-prompting strategies, boosting its average mitigation potential from $1.28\times$ to $2.35\times$. Moreover, AurA can counteract adversarial pre-prompts that maliciously elicit toxic content, making it an effective method for deploying safer and less toxic models.


The Role of Entropy and Reconstruction in Multi-View Self-Supervised Learning

arXiv.org Artificial Intelligence

The mechanisms behind the success of multi-view self-supervised learning (MVSSL) are not yet fully understood. Contrastive MVSSL methods have been studied through the lens of InfoNCE, a lower bound of the Mutual Information (MI). However, the relation between other MVSSL methods and MI remains unclear. We consider a different lower bound on the MI consisting of an entropy and a reconstruction term (ER), and analyze the main MVSSL families through its lens. Through this ER bound, we show that clustering-based methods such as DeepCluster and SwAV maximize the MI. We also re-interpret the mechanisms of distillation-based approaches such as BYOL and DINO, showing that they explicitly maximize the reconstruction term and implicitly encourage a stable entropy, and we confirm this empirically. We show that replacing the objectives of common MVSSL methods with this ER bound achieves competitive performance, while making them stable when training with smaller batch sizes or smaller exponential moving average (EMA) coefficients. Github repo: https://github.com/apple/ml-entropy-reconstruction.


DUET: 2D Structured and Approximately Equivariant Representations

arXiv.org Artificial Intelligence

Multiview Self-Supervised Learning (MSSL) is based on learning invariances with respect to a set of input transformations. However, invariance partially or totally removes transformation-related information from the representations, which might harm performance for specific downstream tasks that require such information. We propose 2D strUctured and EquivarianT representations (coined DUET), which are 2d representations organized in a matrix structure, and equivariant with respect to transformations acting on the input data. DUET representations maintain information about an input transformation, while remaining semantically expressive. Compared to SimCLR (Chen et al., 2020) (unstructured and invariant) and ESSL (Dangovski et al., 2022) (unstructured and equivariant), the structured and equivariant nature of DUET representations enables controlled generation with lower reconstruction error, while controllability is not possible with SimCLR or ESSL. DUET also achieves higher accuracy for several discriminative tasks, and improves transfer learning.


DeepPCR: Parallelizing Sequential Operations in Neural Networks

arXiv.org Artificial Intelligence

Parallelization techniques have become ubiquitous for accelerating inference and training of deep neural networks. Despite this, several operations are still performed in a sequential manner. For instance, the forward and backward passes are executed layer-by-layer, and the output of diffusion models is produced by applying a sequence of denoising steps. This sequential approach results in a computational cost proportional to the number of steps involved, presenting a potential bottleneck as the number of steps increases. In this work, we introduce DeepPCR, a novel algorithm which parallelizes typically sequential operations in order to speed up inference and training of neural networks. DeepPCR is based on interpreting a sequence of $L$ steps as the solution of a specific system of equations, which we recover using the Parallel Cyclic Reduction algorithm. This reduces the complexity of computing the sequential operations from $\mathcal{O}(L)$ to $\mathcal{O}(\log_2L)$, thus yielding a speedup for large $L$. To verify the theoretical lower complexity of the algorithm, and to identify regimes for speedup, we test the effectiveness of DeepPCR in parallelizing the forward and backward pass in multi-layer perceptrons, and reach speedups of up to $30\times$ for the forward and $200\times$ for the backward pass. We additionally showcase the flexibility of DeepPCR by parallelizing training of ResNets with as many as 1024 layers, and generation in diffusion models, enabling up to $7\times$ faster training and $11\times$ faster generation, respectively, when compared to the sequential approach.


Robust multimodal models have outlier features and encode more concepts

arXiv.org Artificial Intelligence

What distinguishes robust models from non-robust ones? This question has gained traction with the appearance of large-scale multimodal models, such as CLIP. These models have demonstrated unprecedented robustness with respect to natural distribution shifts. While it has been shown that such differences in robustness can be traced back to differences in training data, so far it is not known what that translates to in terms of what the model has learned. In this work, we bridge this gap by probing the representation spaces of 12 robust multimodal models with various backbones (ResNets and ViTs) and pretraining sets (OpenAI, LAION-400M, LAION-2B, YFCC15M, CC12M and DataComp). We find two signatures of robustness in the representation spaces of these models: (1) Robust models exhibit outlier features characterized by their activations, with some being several orders of magnitude above average. These outlier features induce privileged directions in the model's representation space. We demonstrate that these privileged directions explain most of the predictive power of the model by pruning up to $80 \%$ of the least important representation space directions without negative impacts on model accuracy and robustness; (2) Robust models encode substantially more concepts in their representation space. While this superposition of concepts allows robust models to store much information, it also results in highly polysemantic features, which makes their interpretation challenging. We discuss how these insights pave the way for future research in various fields, such as model pruning and mechanistic interpretability.


Spatial LibriSpeech: An Augmented Dataset for Spatial Audio Learning

arXiv.org Artificial Intelligence

We present Spatial LibriSpeech, a spatial audio dataset with over 650 hours of 19-channel audio, first-order ambisonics, and optional distractor noise. Spatial LibriSpeech is designed for machine learning model training, and it includes labels for source position, speaking direction, room acoustics and geometry. Spatial LibriSpeech is generated by augmenting LibriSpeech samples with 200k+ simulated acoustic conditions across 8k+ synthetic rooms. To demonstrate the utility of our dataset, we train models on four spatial audio tasks, resulting in a median absolute error of 6.60{\deg} on 3D source localization, 0.43m on distance, 90.66ms on T30, and 2.74dB on DRR estimation. We show that the same models generalize well to widely-used evaluation datasets, e.g., obtaining a median absolute error of 12.43{\deg} on 3D source localization on TUT Sound Events 2018, and 157.32ms on T30 estimation on ACE Challenge.