Zanuttini, Bruno
Knowledge-Based Policies for Qualitative Decentralized POMDPs
Saffidine, Abdallah (University of New South Wales, Sydney) | Schwarzentruber, François (Univ. Rennes, CNRS, IRISA) | Zanuttini, Bruno (Normandie Univ)
Qualitative Decentralized Partially Observable Markov Decision Problems (QDec-POMDPs) constitute a very general class of decision problems. They involve multiple agents, decentralized execution, sequential decision, partial observability, and uncertainty. Typically, joint policies, which prescribe to each agent an action to take depending on its full history of (local) actions and observations, are huge, which makes it difficult to store them onboard, at execution time, and also hampers the computation of joint plans. We propose and investigate a new representation for joint policies in QDec-POMDPs, which we call Multi-Agent Knowledge-Based Programs (MAKBPs), and which uses epistemic logic for compactly representing conditions on histories. Contrary to standard representations, executing an MAKBP requires reasoning at execution time, but we show that MAKBPs can be exponentially more succinct than any reactive representation.
An Experimental Study of Advice in Sequential Decision-Making Under Uncertainty
Benavent, Florian (Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, 14000 Caen) | Zanuttini, Bruno (Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, 14000 Caen)
We consider sequential decision making problems under uncertainty, in which a user has a general idea of the task to achieve, and gives advice to an agent in charge of computing an optimal policy. Many different notions of advice have been proposed in somewhat different settings, especially in the field of inverse reinforcement learning and for resolution of Markov Decision Problems with Imprecise Rewards. Two key questions are whether the advice required by a specific method is natural for the user to give, and how much advice is needed for the agent to compute a good policy, as evaluated by the user. We give a unified view of a number of proposals made in the literature, and propose a new notion of advice, which corresponds to a user telling why she would take a given action in a given state. For all these notions, we discuss their naturalness for a user and the integration of advice. We then report on an experimental study of the amount of advice needed for the agent to compute a good policy. Our study shows in particular that continual interaction between the user and the agent is worthwhile, and sheds light on the pros and cons of each type of advice.
Probabilistic Knowledge-Based Programs
Lang, Jérôme (CNRS, Université Paris-Dauphine) | Zanuttini, Bruno (Université de Caen Basse-Normandie)
We introduce Probabilistic Knowledge-Based Programs (PKBPs), a new, compact representation of policies for factored partially observable Markov decision processes. PKBPs use branching conditions such as if the probability of φ is larger than p, and many more. While similar in spirit to value-based policies, PKBPs leverage the factored representation for more compactness. They also cope with more general goals than standard state-based rewards, such as pure information-gathering goals. Compactness comes at the price of reactivity, since evaluating branching conditions on-line is not polynomial in general. In this sense, PKBPs are complementary to other representations. Our intended application is as a tool for experts to specify policies in a natural, compact language, then have them verified automatically. We study succinctness and the complexity of verification for PKBPs.