Zaiane, Osmar
A Study of the Efficacy of Generative Flow Networks for Robotics and Machine Fault-Adaptation
Sufiyan, Zahin, Golestan, Shadan, Miwa, Shotaro, Mitsuka, Yoshihiro, Zaiane, Osmar
Advancements in robotics have opened possibilities to automate tasks in various fields such as manufacturing, emergency response and healthcare. However, a significant challenge that prevents robots from operating in real-world environments effectively is out-of-distribution (OOD) situations, wherein robots encounter unforseen situations. One major OOD situations is when robots encounter faults, making fault adaptation essential for real-world operation for robots. Current state-of-the-art reinforcement learning algorithms show promising results but suffer from sample inefficiency, leading to low adaptation speed due to their limited ability to generalize to OOD situations. Our research is a step towards adding hardware fault tolerance and fast fault adaptability to machines. In this research, our primary focus is to investigate the efficacy of generative flow networks in robotic environments, particularly in the domain of machine fault adaptation. We simulated a robotic environment called Reacher in our experiments. We modify this environment to introduce four distinct fault environments that replicate real-world machines/robot malfunctions. The empirical evaluation of this research indicates that continuous generative flow networks (CFlowNets) indeed have the capability to add adaptive behaviors in machines under adversarial conditions. Furthermore, the comparative analysis of CFlowNets with reinforcement learning algorithms also provides some key insights into the performance in terms of adaptation speed and sample efficiency. Additionally, a separate study investigates the implications of transferring knowledge from pre-fault task to post-fault environments. Our experiments confirm that CFlowNets has the potential to be deployed in a real-world machine and it can demonstrate adaptability in case of malfunctions to maintain functionality.
Narrowing the semantic gaps in U-Net with learnable skip connections: The case of medical image segmentation
Wang, Haonan, Cao, Peng, Liu, Xiaoli, Yang, Jinzhu, Zaiane, Osmar
Most state-of-the-art methods for medical image segmentation adopt the encoder-decoder architecture. However, this U-shaped framework still has limitations in capturing the non-local multi-scale information with a simple skip connection. To solve the problem, we firstly explore the potential weakness of skip connections in U-Net on multiple segmentation tasks, and find that i) not all skip connections are useful, each skip connection has different contribution; ii) the optimal combinations of skip connections are different, relying on the specific datasets. Based on our findings, we propose a new segmentation framework, named UDTransNet, to solve three semantic gaps in U-Net. Specifically, we propose a Dual Attention Transformer (DAT) module for capturing the channel- and spatial-wise relationships to better fuse the encoder features, and a Decoder-guided Recalibration Attention (DRA) module for effectively connecting the DAT tokens and the decoder features to eliminate the inconsistency. Hence, both modules establish a learnable connection to solve the semantic gaps between the encoder and the decoder, which leads to a high-performance segmentation model for medical images. Comprehensive experimental results indicate that our UDTransNet produces higher evaluation scores and finer segmentation results with relatively fewer parameters over the state-of-the-art segmentation methods on different public datasets. Code: https://github.com/McGregorWwww/UDTransNet.
Exploring Best Practices for ECG Signal Processing in Machine Learning
Salimi, Amir, Kalmady, Sunil Vasu, Hindle, Abram, Zaiane, Osmar, Kaul, Padma
In this work we search for best practices in pre-processing of Electrocardiogram (ECG) signals in order to train better classifiers for the diagnosis of heart conditions. State of the art machine learning algorithms have achieved remarkable results in classification of some heart conditions using ECG data, yet there appears to be no consensus on pre-processing best practices. Is this lack of consensus due to different conditions and architectures requiring different processing steps for optimal performance? Is it possible that state of the art deep-learning models have rendered pre-processing unnecessary? In this work we apply down-sampling, normalization, and filtering functions to 3 different multi-label ECG datasets and measure their effects on 3 different high-performing time-series classifiers. We find that sampling rates as low as 50Hz can yield comparable results to the commonly used 500Hz. This is significant as smaller sampling rates will result in smaller datasets and models, which require less time and resources to train. Additionally, despite their common usage, we found min-max normalization to be slightly detrimental overall, and band-passing to make no measurable difference. We found the blind approach to pre-processing of ECGs for multi-label classification to be ineffective, with the exception of sample rate reduction which reliably reduces computational resources, but does not increase accuracy.
FREDA: Flexible Relation Extraction Data Annotation
Strobl, Michael, Trabelsi, Amine, Zaiane, Osmar
To effectively train accurate Relation Extraction models, sufficient and properly labeled data is required. Adequately labeled data is difficult to obtain and annotating such data is a tricky undertaking. Previous works have shown that either accuracy has to be sacrificed or the task is extremely time-consuming, if done accurately. We are proposing an approach in order to produce high-quality datasets for the task of Relation Extraction quickly. Neural models, trained to do Relation Extraction on the created datasets, achieve very good results and generalize well to other datasets. In our study, we were able to annotate 10,022 sentences for 19 relations in a reasonable amount of time, and trained a commonly used baseline model for each relation.
STEP-EZ: Syntax Tree guided semantic ExPlanation for Explainable Zero-shot modeling of clinical depression symptoms from text
Farruque, Nawshad, Goebel, Randy, Zaiane, Osmar, Sivapalan, Sudhakar
We focus on exploring various approaches of Zero-Shot Learning (ZSL) and their explainability for a challenging yet important supervised learning task notorious for training data scarcity, i.e. Depression Symptoms Detection (DSD) from text. We start with a comprehensive synthesis of different components of our ZSL modeling and analysis of our ground truth samples and Depression symptom clues curation process with the help of a practicing clinician. We next analyze the accuracy of various state-of-the-art ZSL models and their potential enhancements for our task. Further, we sketch a framework for the use of ZSL for hierarchical text-based explanation mechanism, which we call, Syntax Tree-Guided Semantic Explanation (STEP). Finally, we summarize experiments from which we conclude that we can use ZSL models and achieve reasonable accuracy and explainability, measured by a proposed Explainability Index (EI). This work is, to our knowledge, the first work to exhaustively explore the efficacy of ZSL models for DSD task, both in terms of accuracy and explainability.
Basic and Depression Specific Emotion Identification in Tweets: Multi-label Classification Experiments
Farruque, Nawshad, Huang, Chenyang, Zaiane, Osmar, Goebel, Randy
We choose our basic emotions from a hybrid emotion model consisting of the common emotions from four highly regarded psychological models of emotions. Moreover, we augment that emotion model with new emotion categories because of their importance in the analysis of depression. Most of those additional emotions have not been used in previous emotion mining research. Our experimental analyses show that a cost sensitive RankSVM algorithm and a Deep Learning model are both robust, measured by both Macro F-measures and Micro F-measures. This suggests that these algorithms are superior in addressing the widely known data imbalance problem in multi-label learning. Moreover, our application of Deep Learning performs the best, giving it an edge in modeling deep semantic features of our extended emotional categories.
Building a Competitive Associative Classifier
Sood, Nitakshi, Zaiane, Osmar
With the huge success of deep learning, other machine learning paradigms have had to take back seat. Yet other models, particularly rule-based, are more readable and explainable and can even be competitive when labelled data is not abundant. However, most of the existing rule-based classifiers suffer from the production of a large number of classification rules, affecting the model readability. This hampers the classification accuracy as noisy rules might not add any useful informationfor classification and also lead to longer classification time. In this study, we propose SigD2 which uses a novel, two-stage pruning strategy which prunes most of the noisy, redundant and uninteresting rules and makes the classification model more accurate and readable. To make SigDirect more competitive with the most prevalent but uninterpretable machine learning-based classifiers like neural networks and support vector machines, we propose bagging and boosting on the ensemble of the SigDirect classifier. The results of the proposed algorithms are quite promising and we are able to obtain a minimal set of statistically significant rules for classification without jeopardizing the classification accuracy. We use 15 UCI datasets and compare our approach with eight existing systems.The SigD2 and boosted SigDirect (ACboost) ensemble model outperform various state-of-the-art classifiers not only in terms of classification accuracy but also in terms of the number of rules.