Goto

Collaborating Authors

 Zaech, Jan-Nico


Small-Scale Testbeds for Connected and Automated Vehicles and Robot Swarms: Challenges and a Roadmap

arXiv.org Artificial Intelligence

This article proposes a roadmap to address the current challenges in small-scale testbeds for Connected and Automated Vehicles (CAVs) and robot swarms. The roadmap is a joint effort of participants in the workshop "1st Workshop on Small-Scale Testbeds for Connected and Automated Vehicles and Robot Swarms," held on June 2 at the IEEE Intelligent Vehicles Symposium (IV) 2024 in Jeju, South Korea. The roadmap contains three parts: 1) enhancing accessibility and diversity, especially for underrepresented communities, 2) sharing best practices for the development and maintenance of testbeds, and 3) connecting testbeds through an abstraction layer to support collaboration. The workshop features eight invited speakers, four contributed papers [1]-[4], and a presentation of a survey paper on testbeds [5]. The survey paper provides an online comparative table of more than 25 testbeds, available at https://bassamlab.github.io/testbeds-survey. The workshop's own website is available at https://cpm-remote.lrt.unibw-muenchen.de/iv24-workshop.


Dream to Drive: Model-Based Vehicle Control Using Analytic World Models

arXiv.org Artificial Intelligence

Differentiable simulators have recently shown great promise for training autonomous vehicle controllers. Being able to backpropagate through them, they can be placed into an end-to-end training loop where their known dynamics turn into useful priors for the policy to learn, removing the typical black box assumption of the environment. So far, these systems have only been used to train policies. However, this is not the end of the story in terms of what they can offer. Here, for the first time, we use them to train world models. Specifically, we present three new task setups that allow us to learn next state predictors, optimal planners, and optimal inverse states. Unlike analytic policy gradients (APG), which requires the gradient of the next simulator state with respect to the current actions, our proposed setups rely on the gradient of the next state with respect to the current state. We call this approach Analytic World Models (AWMs) and showcase its applications, including how to use it for planning in the Waymax simulator. Apart from pushing the limits of what is possible with such simulators, we offer an improved training recipe that increases performance on the large-scale Waymo Open Motion dataset by up to 12% compared to baselines at essentially no additional cost.


Holistic Understanding of 3D Scenes as Universal Scene Description

arXiv.org Artificial Intelligence

3D scene understanding is a long-standing challenge in computer vision and a key component in enabling mixed reality, wearable computing, and embodied AI. Providing a solution to these applications requires a multifaceted approach that covers scene-centric, object-centric, as well as interaction-centric capabilities. While there exist numerous datasets approaching the former two problems, the task of understanding interactable and articulated objects is underrepresented and only partly covered by current works. In this work, we address this shortcoming and introduce (1) an expertly curated dataset in the Universal Scene Description (USD) format, featuring high-quality manual annotations, for instance, segmentation and articulation on 280 indoor scenes; (2) a learning-based model together with a novel baseline capable of predicting part segmentation along with a full specification of motion attributes, including motion type, articulated and interactable parts, and motion parameters; (3) a benchmark serving to compare upcoming methods for the task at hand. Overall, our dataset provides 8 types of annotations - object and part segmentations, motion types, movable and interactable parts, motion parameters, connectivity, and object mass annotations. With its broad and high-quality annotations, the data provides the basis for holistic 3D scene understanding models. All data is provided in the USD format, allowing interoperability and easy integration with downstream tasks. We provide open access to our dataset, benchmark, and method's source code.


ReVLA: Reverting Visual Domain Limitation of Robotic Foundation Models

arXiv.org Artificial Intelligence

Recent progress in large language models and access to large-scale robotic datasets has sparked a paradigm shift in robotics models transforming them into generalists able to adapt to various tasks, scenes, and robot modalities. A large step for the community are open Vision Language Action models which showcase strong performance in a wide variety of tasks. In this work, we study the visual generalization capabilities of three existing robotic foundation models, and propose a corresponding evaluation framework. Our study shows that the existing models do not exhibit robustness to visual out-of-domain scenarios. This is potentially caused by limited variations in the training data and/or catastrophic forgetting, leading to domain limitations in the vision foundation models. We further explore OpenVLA, which uses two pre-trained vision foundation models and is, therefore, expected to generalize to out-of-domain experiments. However, we showcase catastrophic forgetting by DINO-v2 in OpenVLA through its failure to fulfill the task of depth regression. To overcome the aforementioned issue of visual catastrophic forgetting, we propose a gradual backbone reversal approach founded on model merging. This enables OpenVLA which requires the adaptation of the visual backbones during initial training -- to regain its visual generalization ability. Regaining this capability enables our ReVLA model to improve over OpenVLA by a factor of 77% and 66% for grasping and lifting in visual OOD tasks .


Probabilistic Sampling of Balanced K-Means using Adiabatic Quantum Computing

arXiv.org Artificial Intelligence

Adiabatic quantum computing (AQC) is a promising quantum computing approach for discrete and often NP-hard optimization problems. Current AQCs allow to implement problems of research interest, which has sparked the development of quantum representations for many machine learning and computer vision tasks. Despite requiring multiple measurements from the noisy AQC, current approaches only utilize the best measurement, discarding information contained in the remaining ones. In this work, we explore the potential of using this information for probabilistic balanced k-means clustering. Instead of discarding non-optimal solutions, we propose to use them to compute calibrated posterior probabilities with little additional compute cost. This allows us to identify ambiguous solutions and data points, which we demonstrate on a D-Wave AQC on synthetic and real data.


Adiabatic Quantum Computing for Multi Object Tracking

arXiv.org Artificial Intelligence

Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time. The association step naturally leads to discrete optimization problems. As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware. Adiabatic quantum computing (AQC) offers a solution for this, as it has the potential to provide a considerable speedup on a range of NP-hard optimization problems in the near future. However, current MOT formulations are unsuitable for quantum computing due to their scaling properties. In this work, we therefore propose the first MOT formulation designed to be solved with AQC. We employ an Ising model that represents the quantum mechanical system implemented on the AQC. We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers. Finally, we demonstrate that our MOT problem is already solvable on the current generation of real quantum computers for small examples, and analyze the properties of the measured solutions.


Semantic Understanding of Foggy Scenes with Purely Synthetic Data

arXiv.org Artificial Intelligence

-- This work addresses the problem of semantic scene understanding under foggy road conditions. Although marked progress has been made in semantic scene understanding over the recent years, it is mainly concentrated on clear weather outdoor scenes. Extending semantic segmentation methods to adverse weather conditions like fog is crucially important for outdoor applications such as self-driving cars. In this paper, we propose a novel method, which uses purely synthetic data to improve the performance on unseen real-world foggy scenes captured in the streets of Zurich and its surroundings. Our results highlight the potential and power of photo-realistic synthetic images for training and especially fine-tuning deep neural nets. Our contributions are threefold, 1) we created a purely synthetic, high-quality foggy dataset of 25,000 unique outdoor scenes, that we call Foggy Synscapes and plan to release publicly 2) we show that with this data we outperform previous approaches on real-world foggy test data 3) we show that a combination of our data and previously used data can even further improve the performance on real-world foggy data. The last years have seen tremendous progress in tasks relevant to autonomous driving [1].