Goto

Collaborating Authors

 Yun, Youngsik


Culture-TRIP: Culturally-Aware Text-to-Image Generation with Iterative Prompt Refinment

arXiv.org Artificial Intelligence

Text-to-Image models, including Stable Diffusion, have significantly improved in generating images that are highly semantically aligned with the given prompts. However, existing models may fail to produce appropriate images for the cultural concepts or objects that are not well known or underrepresented in western cultures, such as `hangari' (Korean utensil). In this paper, we propose a novel approach, Culturally-Aware Text-to-Image Generation with Iterative Prompt Refinement (Culture-TRIP), which refines the prompt in order to improve the alignment of the image with such culture nouns in text-to-image models. Our approach (1) retrieves cultural contexts and visual details related to the culture nouns in the prompt and (2) iteratively refines and evaluates the prompt based on a set of cultural criteria and large language models. The refinement process utilizes the information retrieved from Wikipedia and the Web. Our user survey, conducted with 66 participants from eight different countries demonstrates that our proposed approach enhances the alignment between the images and the prompts. In particular, C-TRIP demonstrates improved alignment between the generated images and underrepresented culture nouns. Resource can be found at https://shane3606.github.io/Culture-TRIP.


CIC: A framework for Culturally-aware Image Captioning

arXiv.org Artificial Intelligence

Image Captioning generates descriptive sentences from images using Vision-Language Pre-trained models (VLPs) such as BLIP, which has improved greatly. However, current methods lack the generation of detailed descriptive captions for the cultural elements depicted in the images, such as the traditional clothing worn by people from Asian cultural groups. In this paper, we propose a new framework, \textbf{Culturally-aware Image Captioning (CIC)}, that generates captions and describes cultural elements extracted from cultural visual elements in images representing cultures. Inspired by methods combining visual modality and Large Language Models (LLMs) through appropriate prompts, our framework (1) generates questions based on cultural categories from images, (2) extracts cultural visual elements from Visual Question Answering (VQA) using generated questions, and (3) generates culturally-aware captions using LLMs with the prompts. Our human evaluation conducted on 45 participants from 4 different cultural groups with a high understanding of the corresponding culture shows that our proposed framework generates more culturally descriptive captions when compared to the image captioning baseline based on VLPs. Our code and dataset will be made publicly available upon acceptance.