Yuhuai Wu
Sticking the Landing: Simple, Lower-Variance Gradient Estimators for Variational Inference
Geoffrey Roeder, Yuhuai Wu, David K. Duvenaud
We propose a simple and general variant of the standard reparameterized gradient estimator for the variational evidence lower bound. Specifically, we remove a part of the total derivative with respect to the variational parameters that corresponds to the score function. Removing this term produces an unbiased gradient estimator whose variance approaches zero as the approximate posterior approaches the exact posterior. We analyze the behavior of this gradient estimator theoretically and empirically, and generalize it to more complex variational distributions such as mixtures and importance-weighted posteriors.
Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation
Yuhuai Wu, Elman Mansimov, Roger B. Grosse, Shun Liao, Jimmy Ba
In this work, we propose to apply trust region optimization to deep reinforcement learning using a recently proposed Kronecker-factored approximation to the curvature. We extend the framework of natural policy gradient and propose to optimize both the actor and the critic using Kronecker-factored approximate curvature (K-FAC) with trust region; hence we call our method Actor Critic using Kronecker-Factored Trust Region (ACKTR). To the best of our knowledge, this is the first scalable trust region natural gradient method for actor-critic methods. It is also the method that learns non-trivial tasks in continuous control as well as discrete control policies directly from raw pixel inputs. We tested our approach across discrete domains in Atari games as well as continuous domains in the Mu-JoCo environment. With the proposed methods, we are able to achieve higher rewards and a 2-to 3-fold improvement in sample efficiency on average, compared to previous state-of-the-art on-policy actor-critic methods.
On Multiplicative Integration with Recurrent Neural Networks
Yuhuai Wu, Saizheng Zhang, Ying Zhang, Yoshua Bengio, Russ R. Salakhutdinov
We introduce a general and simple structural design called "Multiplicative Integration" (MI) to improve recurrent neural networks (RNNs). MI changes the way in which information from difference sources flows and is integrated in the computational building block of an RNN, while introducing almost no extra parameters. The new structure can be easily embedded into many popular RNN models, including LSTMs and GRUs. We empirically analyze its learning behaviour and conduct evaluations on several tasks using different RNN models. Our experimental results demonstrate that Multiplicative Integration can provide a substantial performance boost over many of the existing RNN models.
Architectural Complexity Measures of Recurrent Neural Networks
Saizheng Zhang, Yuhuai Wu, Tong Che, Zhouhan Lin, Roland Memisevic, Russ R. Salakhutdinov, Yoshua Bengio
In this paper, we systematically analyze the connecting architectures of recurrent neural networks (RNNs). Our main contribution is twofold: first, we present a rigorous graph-theoretic framework describing the connecting architectures of RNNs in general. Second, we propose three architecture complexity measures of RNNs: (a) the recurrent depth, which captures the RNN's over-time nonlinear complexity, (b) the feedforward depth, which captures the local input-output nonlinearity (similar to the "depth" in feedforward neural networks (FNNs)), and (c) the recurrent skip coefficient which captures how rapidly the information propagates over time. We rigorously prove each measure's existence and computability. Our experimental results show that RNNs might benefit from larger recurrent depth and feedforward depth. We further demonstrate that increasing recurrent skip coefficient offers performance boosts on long term dependency problems.
Path-Normalized Optimization of Recurrent Neural Networks with ReLU Activations
Behnam Neyshabur, Yuhuai Wu, Russ R. Salakhutdinov, Nati Srebro
We investigate the parameter-space geometry of recurrent neural networks (RNNs), and develop an adaptation of path-SGD optimization method, attuned to this geometry, that can learn plain RNNs with ReLU activations. On several datasets that require capturing long-term dependency structure, we show that path-SGD can significantly improve trainability of ReLU RNNs compared to RNNs trained with SGD, even with various recently suggested initialization schemes.
Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation
Yuhuai Wu, Elman Mansimov, Roger B. Grosse, Shun Liao, Jimmy Ba
In this work, we propose to apply trust region optimization to deep reinforcement learning using a recently proposed Kronecker-factored approximation to the curvature. We extend the framework of natural policy gradient and propose to optimize both the actor and the critic using Kronecker-factored approximate curvature (K-FAC) with trust region; hence we call our method Actor Critic using Kronecker-Factored Trust Region (ACKTR). To the best of our knowledge, this is the first scalable trust region natural gradient method for actor-critic methods. It is also the method that learns non-trivial tasks in continuous control as well as discrete control policies directly from raw pixel inputs. We tested our approach across discrete domains in Atari games as well as continuous domains in the Mu-JoCo environment. With the proposed methods, we are able to achieve higher rewards and a 2-to 3-fold improvement in sample efficiency on average, compared to previous state-of-the-art on-policy actor-critic methods.