Goto

Collaborating Authors

 Yuekai Sun


On model selection consistency of penalized M-estimators: a geometric theory

Neural Information Processing Systems

Penalized M-estimators are used in diverse areas of science and engineering to fit high-dimensional models with some low-dimensional structure. Often, the penalties are geometrically decomposable, i.e. can be expressed as a sum of support functions over convex sets. We generalize the notion of irrepresentable to geometrically decomposable penalties and develop a general framework for establishing consistency and model selection consistency of M-estimators with such penalties. We then use this framework to derive results for some special cases of interest in bioinformatics and statistical learning.


Feature-distributed sparse regression: a screen-and-clean approach

Neural Information Processing Systems

Most existing approaches to distributed sparse regression assume the data is partitioned by samples. However, for high-dimensional data (D N), it is more natural to partition the data by features. We propose an algorithm to distributed sparse regression when the data is partitioned by features rather than samples. Our approach allows the user to tailor our general method to various distributed computing platforms by trading-off the total amount of data (in bits) sent over the communication network and the number of rounds of communication.