Goto

Collaborating Authors

 Yue, Yang


Vision-to-Music Generation: A Survey

arXiv.org Artificial Intelligence

Vision-to-music Generation, including video-to-music and image-to-music tasks, is a significant branch of multimodal artificial intelligence demonstrating vast application prospects in fields such as film scoring, short video creation, and dance music synthesis. However, compared to the rapid development of modalities like text and images, research in vision-to-music is still in its preliminary stage due to its complex internal structure and the difficulty of modeling dynamic relationships with video. Existing surveys focus on general music generation without comprehensive discussion on vision-to-music. In this paper, we systematically review the research progress in the field of vision-to-music generation. We first analyze the technical characteristics and core challenges for three input types: general videos, human movement videos, and images, as well as two output types of symbolic music and audio music. We then summarize the existing methodologies on vision-to-music generation from the architecture perspective. A detailed review of common datasets and evaluation metrics is provided. Finally, we discuss current challenges and promising directions for future research. We hope our survey can inspire further innovation in vision-to-music generation and the broader field of multimodal generation in academic research and industrial applications. To follow latest works and foster further innovation in this field, we are continuously maintaining a GitHub repository at https://github.com/wzk1015/Awesome-Vision-to-Music-Generation.


Towards Understanding the Benefit of Multitask Representation Learning in Decision Process

arXiv.org Artificial Intelligence

Multitask Representation Learning (MRL) has emerged as a prevalent technique to improve sample efficiency in Reinforcement Learning (RL). Empirical studies have found that training agents on multiple tasks simultaneously within online and transfer learning environments can greatly improve efficiency. Despite its popularity, a comprehensive theoretical framework that elucidates its operational efficacy remains incomplete. Prior analyses have predominantly assumed that agents either possess a pre-known representation function or utilize functions from a linear class, where both are impractical. The complexity of real-world applications typically requires the use of sophisticated, non-linear functions such as neural networks as representation function, which are not pre-existing but must be learned. Our work tries to fill the gap by extending the analysis to \textit{unknown non-linear} representations, giving a comprehensive analysis for its mechanism in online and transfer learning setting. We consider the setting that an agent simultaneously playing $M$ contextual bandits (or MDPs), developing a shared representation function $\phi$ from a non-linear function class $\Phi$ using our novel Generalized Functional Upper Confidence Bound algorithm (GFUCB). We formally prove that this approach yields a regret upper bound that outperforms the lower bound associated with learning $M$ separate tasks, marking the first demonstration of MRL's efficacy in a general function class. This framework also explains the contribution of representations to transfer learning when faced with new, yet related tasks, and identifies key conditions for successful transfer. Empirical experiments further corroborate our theoretical findings.


Uni-AdaFocus: Spatial-temporal Dynamic Computation for Video Recognition

arXiv.org Artificial Intelligence

This paper presents a comprehensive exploration of the phenomenon of data redundancy in video understanding, with the aim to improve computational efficiency. Our investigation commences with an examination of spatial redundancy, which refers to the observation that the most informative region in each video frame usually corresponds to a small image patch, whose shape, size and location shift smoothly across frames. Motivated by this phenomenon, we formulate the patch localization problem as a dynamic decision task, and introduce a spatially adaptive video recognition approach, termed AdaFocus. In specific, a lightweight encoder is first employed to quickly process the full video sequence, whose features are then utilized by a policy network to identify the most task-relevant regions. Subsequently, the selected patches are inferred by a high-capacity deep network for the final prediction. The full model can be trained in end-to-end conveniently. Furthermore, AdaFocus can be extended by further considering temporal and sample-wise redundancies, i.e., allocating the majority of computation to the most task-relevant frames, and minimizing the computation spent on relatively "easier" videos. Our resulting approach, Uni-AdaFocus, establishes a comprehensive framework that seamlessly integrates spatial, temporal, and sample-wise dynamic computation, while it preserves the merits of AdaFocus in terms of efficient end-to-end training and hardware friendliness. In addition, Uni-AdaFocus is general and flexible as it is compatible with off-the-shelf efficient backbones (e.g., TSM and X3D), which can be readily deployed as our feature extractor, yielding a significantly improved computational efficiency. Empirically, extensive experiments based on seven benchmark datasets and three application scenarios substantiate that Uni-AdaFocus is considerably more efficient than the competitive baselines.


DeeR-VLA: Dynamic Inference of Multimodal Large Language Models for Efficient Robot Execution

arXiv.org Artificial Intelligence

MLLMs have demonstrated remarkable comprehension and reasoning capabilities with complex language and visual data. These advances have spurred the vision of establishing a generalist robotic MLLM proficient in understanding complex human instructions and accomplishing various embodied tasks. However, developing MLLMs for real-world robots is challenging due to the typically limited computation and memory capacities available on robotic platforms. In contrast, the inference of MLLMs involves storing billions of parameters and performing tremendous computation, imposing significant hardware demands. In our paper, we propose a Dynamic Early-Exit Framework for Robotic Vision-Language-Action Model (DeeR-VLA, or simply DeeR) that automatically adjusts the size of the activated MLLM based on each situation at hand. The approach leverages a multi-exit architecture in MLLMs, which allows the model to terminate processing once a proper size of the model has been activated for a specific situation, thus avoiding further redundant computation. Additionally, we develop novel algorithms that establish early-termination criteria for DeeR, conditioned on predefined demands such as average computational cost (i.e., power consumption), as well as peak computational consumption (i.e., latency) and GPU memory usage. These enhancements ensure that DeeR operates efficiently under varying resource constraints while maintaining competitive performance. On the CALVIN robot manipulation benchmark, DeeR demonstrates significant reductions in computational costs of LLM by 5.2-6.5x and GPU memory of LLM by 2-6x without compromising performance. Code and checkpoints are available at https://github.com/yueyang130/DeeR-VLA.


How Far is Video Generation from World Model: A Physical Law Perspective

arXiv.org Artificial Intelligence

OpenAI's Sora highlights the potential of video generation for developing world models that adhere to fundamental physical laws. However, the ability of video generation models to discover such laws purely from visual data without human priors can be questioned. A world model learning the true law should give predictions robust to nuances and correctly extrapolate on unseen scenarios. In this work, we evaluate across three key scenarios: in-distribution, out-of-distribution, and combinatorial generalization. We developed a 2D simulation testbed for object movement and collisions to generate videos deterministically governed by one or more classical mechanics laws. This provides an unlimited supply of data for large-scale experimentation and enables quantitative evaluation of whether the generated videos adhere to physical laws. We trained diffusion-based video generation models to predict object movements based on initial frames. Our scaling experiments show perfect generalization within the distribution, measurable scaling behavior for combinatorial generalization, but failure in out-of-distribution scenarios. Further experiments reveal two key insights about the generalization mechanisms of these models: (1) the models fail to abstract general physical rules and instead exhibit "case-based" generalization behavior, i.e., mimicking the closest training example; (2) when generalizing to new cases, models are observed to prioritize different factors when referencing training data: color > size > velocity > shape. Our study suggests that scaling alone is insufficient for video generation models to uncover fundamental physical laws, despite its role in Sora's broader success. See our project page at https://phyworld.github.io


LLM-based Optimization of Compound AI Systems: A Survey

arXiv.org Artificial Intelligence

In a compound AI system, components such as an LLM call, a retriever, a code interpreter, or tools are interconnected. The system's behavior is primarily driven by parameters such as instructions or tool definitions. Recent advancements enable end-to-end optimization of these parameters using an LLM. Notably, leveraging an LLM as an optimizer is particularly efficient because it avoids gradient computation and can generate complex code and instructions. This paper presents a survey of the principles and emerging trends in LLM-based optimization of compound AI systems. It covers archetypes of compound AI systems, approaches to LLM-based end-to-end optimization, and insights into future directions and broader impacts. Importantly, this survey uses concepts from program analysis to provide a unified view of how an LLM optimizer is prompted to optimize a compound AI system. The exhaustive list of paper is provided at https://github.com/linyuhongg/LLM-based-Optimization-of-Compound-AI-Systems.


Model Surgery: Modulating LLM's Behavior Via Simple Parameter Editing

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have demonstrated great potential as generalist assistants, showcasing powerful task understanding and problem-solving capabilities. To deploy LLMs as AI assistants, it is crucial that these models exhibit desirable behavioral traits, such as non-toxicity and resilience against jailbreak attempts. Current methods for detoxification or preventing jailbreaking usually involve Supervised Fine-Tuning (SFT) or Reinforcement Learning from Human Feedback (RLHF), which requires finetuning billions of parameters through gradient descent with substantial computation cost. Furthermore, models modified through SFT and RLHF may deviate from the pretrained models, potentially leading to a degradation in foundational LLM capabilities. In this paper, we observe that surprisingly, directly editing a small subset of parameters can effectively modulate specific behaviors of LLMs, such as detoxification and resistance to jailbreaking. Specifically, for a behavior that we aim to avoid, we employ a linear classifier, which we term the behavior probe, to classify binary behavior labels within the hidden state space of the LLM. Using this probe, we introduce an algorithm to identify a critical subset of LLM parameters that significantly influence this targeted behavior. Then we directly edit these selected parameters by shifting them towards the behavior probe. Such a direct parameter editing method necessitates only inference-level computational resources. Experiments demonstrate that in the representative detoxification task, our approach achieves reductions of up to 90.0\% in toxicity on the RealToxicityPrompts dataset and 49.2\% on ToxiGen, while maintaining the LLM's general capabilities in areas such as common sense, question answering, and mathematics. Our code is available at https://github.com/lucywang720/model-surgery.


Research on Foundation Model for Spatial Data Intelligence: China's 2024 White Paper on Strategic Development of Spatial Data Intelligence

arXiv.org Artificial Intelligence

Research status and development trends; on this basis, this report proposes three major challenges faced by large spatial data intelligent models today. This report focuses on the current research status of spatial data intelligent large-scale models and sorts out the research progress in four major thematic areas of spatial data intelligent large-scale models: cities, air and space remote sensing, geography, and transportation. This report systematically introduces the key technologies, characteristics and advantages, research status, future development and other core information of spatial data intelligent large models, involving spatiotemporal big data platforms, distributed computing, 3D virtual reality, space The basic performance of large models such as analysis and visualization, as well as the complex spatial comprehensive performance of large models such as geospatial intelligent computing, deep learning, high-performance processing of big data, geographical knowledge graphs, and geographical intelligent multi-scenario simulation, analyze the application of the above key technologies in spatial data The location and role of smart large models.


EfficientTrain++: Generalized Curriculum Learning for Efficient Visual Backbone Training

arXiv.org Artificial Intelligence

The superior performance of modern visual backbones usually comes with a costly training procedure. We contribute to this issue by generalizing the idea of curriculum learning beyond its original formulation, i.e., training models using easier-to-harder data. Specifically, we reformulate the training curriculum as a soft-selection function, which uncovers progressively more difficult patterns within each example during training, instead of performing easier-to-harder sample selection. Our work is inspired by an intriguing observation on the learning dynamics of visual backbones: during the earlier stages of training, the model predominantly learns to recognize some 'easier-to-learn' discriminative patterns in the data. These patterns, when observed through frequency and spatial domains, incorporate lower-frequency components, and the natural image contents without distortion or data augmentation. Motivated by these findings, we propose a curriculum where the model always leverages all the training data at every learning stage, yet the exposure to the 'easier-to-learn' patterns of each example is initiated first, with harder patterns gradually introduced as training progresses. To implement this idea in a computationally efficient way, we introduce a cropping operation in the Fourier spectrum of the inputs, enabling the model to learn from only the lower-frequency components. Then we show that exposing the contents of natural images can be readily achieved by modulating the intensity of data augmentation. Finally, we integrate these aspects and design curriculum schedules with tailored search algorithms. The resulting method, EfficientTrain++, is simple, general, yet surprisingly effective. It reduces the training time of a wide variety of popular models by 1.5-3.0x on ImageNet-1K/22K without sacrificing accuracy. It also demonstrates efficacy in self-supervised learning (e.g., MAE).


Jointly spatial-temporal representation learning for individual trajectories

arXiv.org Artificial Intelligence

Individual trajectories, rich in human-environment interaction information across space and time, serve as vital inputs for geospatial foundation models (GeoFMs). However, existing attempts at learning trajectory representations have overlooked the implicit spatial-temporal dependency within trajectories, failing to encode such dependency in a deep learning-friendly format. That poses a challenge in obtaining general-purpose trajectory representations. Therefore, this paper proposes a spatial-temporal joint representation learning method (ST-GraphRL) to formalize learnable spatial-temporal dependencies into trajectory representations. The proposed ST-GraphRL consists of three compositions: (i) a weighted directed spatial-temporal graph to explicitly construct mobility interactions in both space and time dimensions; (ii) a two-stage jointly encoder (i.e., decoupling and fusion), to learn entangled spatial-temporal dependencies by independently decomposing and jointly aggregating space and time information; (iii) a decoder guides ST-GraphRL to learn explicit mobility regularities by simulating the spatial-temporal distributions of trajectories. Tested on three real-world human mobility datasets, the proposed ST-GraphRL outperformed all the baseline models in predicting movement spatial-temporal distributions and preserving trajectory similarity with high spatial-temporal correlations. Analyzing spatial-temporal features presented in latent space validates that ST-GraphRL understands spatial-temporal patterns. This study may also benefit representation learnings of other geospatial data to achieve general-purpose data representations and advance GeoFMs development.