Goto

Collaborating Authors

 Yuan-Ting Hu


Chirality Nets for Human Pose Regression

Neural Information Processing Systems

We propose Chirality Nets, a family of deep nets that is equivariant to the "chirality transform," i.e., the transformation to create a chiral pair. Through parameter sharing, odd and even symmetry, we propose and prove variants of standard building blocks of deep nets that satisfy the equivariance property, including fully connected layers, convolutional layers, batch-normalization, and LSTM/GRU cells. The proposed layers lead to a more data efficient representation and a reduction in computation by exploiting symmetry. We evaluate chirality nets on the task of human pose regression, which naturally exploits the left/right mirroring of the human body. We study three pose regression tasks: 3D pose estimation from video, 2D pose forecasting, and skeleton based activity recognition. Our approach achieves/matches state-of-the-art results, with more significant gains on small datasets and limited-data settings.


MaskRNN: Instance Level Video Object Segmentation

Neural Information Processing Systems

Instance level video object segmentation is an important technique for video editing and compression. To capture the temporal coherence, in this paper, we develop MaskRNN, a recurrent neural net approach which fuses in each frame the output of two deep nets for each object instance -- a binary segmentation net providing a mask and a localization net providing a bounding box. Due to the recurrent component and the localization component, our method is able to take advantage of long-term temporal structures of the video data as well as rejecting outliers. We validate the proposed algorithm on three challenging benchmark datasets, the DAVIS-2016 dataset, the DAVIS-2017 dataset, and the Segtrack v2 dataset, achieving state-of-the-art performance on all of them.


Chirality Nets for Human Pose Regression

Neural Information Processing Systems

We propose Chirality Nets, a family of deep nets that is equivariant to the "chirality transform," i.e., the transformation to create a chiral pair. Through parameter sharing, odd and even symmetry, we propose and prove variants of standard building blocks of deep nets that satisfy the equivariance property, including fully connected layers, convolutional layers, batch-normalization, and LSTM/GRU cells. The proposed layers lead to a more data efficient representation and a reduction in computation by exploiting symmetry. We evaluate chirality nets on the task of human pose regression, which naturally exploits the left/right mirroring of the human body. We study three pose regression tasks: 3D pose estimation from video, 2D pose forecasting, and skeleton based activity recognition. Our approach achieves/matches state-of-the-art results, with more significant gains on small datasets and limited-data settings.