Goto

Collaborating Authors

 Yuan, Zhiqiang


WalkVLM:Aid Visually Impaired People Walking by Vision Language Model

arXiv.org Artificial Intelligence

Approximately 200 million individuals around the world suffer from varying degrees of visual impairment, making it crucial to leverage AI technology to offer walking assistance for these people. With the recent progress of vision-language models (VLMs), employing VLMs to improve this field has emerged as a popular research topic. However, most existing methods are studied on self-built question-answering datasets, lacking a unified training and testing benchmark for walk guidance. Moreover, in blind walking task, it is necessary to perform real-time streaming video parsing and generate concise yet informative reminders, which poses a great challenge for VLMs that suffer from redundant responses and low inference efficiency. In this paper, we firstly release a diverse, extensive, and unbiased walking awareness dataset, containing 12k video-manual annotation pairs from Europe and Asia to provide a fair training and testing benchmark for blind walking task. Furthermore, a WalkVLM model is proposed, which employs chain of thought for hierarchical planning to generate concise but informative reminders and utilizes temporal-aware adaptive prediction to reduce the temporal redundancy of reminders. Finally, we have established a solid benchmark for blind walking task and verified the advantages of WalkVLM in stream video processing for this task compared to other VLMs. Our dataset and code will be released at anonymous link https://walkvlm2024.github.io.


ILDiff: Generate Transparent Animated Stickers by Implicit Layout Distillation

arXiv.org Artificial Intelligence

High-quality animated stickers usually contain transparent channels, which are often ignored by current video generation models. To generate fine-grained animated transparency channels, existing methods can be roughly divided into video matting algorithms and diffusion-based algorithms. The methods based on video matting have poor performance in dealing with semi-open areas in stickers, while diffusion-based methods are often used to model a single image, which will lead to local flicker when modeling animated stickers. In this paper, we firstly propose an ILDiff method to generate animated transparent channels through implicit layout distillation, which solves the problems of semi-open area collapse and no consideration of temporal information in existing methods. Secondly, we create the Transparent Animated Sticker Dataset (TASD), which contains 0.32M high-quality samples with transparent channel, to provide data support for related fields. Extensive experiments demonstrate that ILDiff can produce finer and smoother transparent channels compared to other methods such as Matting Anything and Layer Diffusion. Our code and dataset will be released at link https://xiaoyuan1996.github.io.


TRANSAGENT: An LLM-Based Multi-Agent System for Code Translation

arXiv.org Artificial Intelligence

Code translation converts code from one programming language to another while maintaining its original functionality, which is crucial for software migration, system refactoring, and cross-platform development. Traditional rule-based methods rely on manually-written rules, which can be time-consuming and often result in less readable code. To overcome this, learning-based methods have been developed, leveraging parallel data to train models for automated code translation. More recently, the advance of Large Language Models (LLMs) further boosts learning-based code translation. Although promising, LLM-translated program still suffers from diverse quality issues (e.g., syntax errors and semantic errors). In particular, it can be challenging for LLMs to self-debug these errors when simply provided with the corresponding error messages. In this work, we propose a novel LLM-based multi-agent system TRANSAGENT, which enhances LLM-based code translation by fixing the syntax errors and semantic errors with the synergy between four LLM-based agents, including Initial Code Translator, Syntax Error Fixer, Code Aligner, and Semantic Error Fixer. The main insight of TRANSAGENT is to first localize the error code block in the target program based on the execution alignment between the target and source program, which can narrow down the fixing space and thus lower down the fixing difficulties. To evaluate TRANSAGENT, we first construct a new benchmark from recent programming tasks to mitigate the potential data leakage issue. On our benchmark, TRANSAGENT outperforms the latest LLM-based code translation technique UniTrans in both translation effectiveness and efficiency; additionally, our evaluation on different LLMs show the generalization of TRANSAGENT and our ablation study shows the contribution of each agent.


Evaluating Instruction-Tuned Large Language Models on Code Comprehension and Generation

arXiv.org Artificial Intelligence

In this work, we evaluate 10 open-source instructed LLMs on four representative code comprehension and generation tasks. We have the following main findings. First, for the zero-shot setting, instructed LLMs are very competitive on code comprehension and generation tasks and sometimes even better than small SOTA models specifically fine-tuned on each downstream task. We also find that larger instructed LLMs are not always better on code-related tasks. Second, for the few-shot setting, we find that adding demonstration examples substantially helps instructed LLMs perform better on most code comprehension and generation tasks; however, the examples would sometimes induce unstable or even worse performance. Furthermore, we find widely-used BM25-based shot selection strategy significantly outperforms the basic random selection or fixed selection only on generation problems. Third, for the fine-tuning setting, we find that fine-tuning could further improve the model performance on downstream code comprehension and generation tasks compared to the zero-shot/one-shot performance. In addition, after being fine-tuned on the same downstream task dataset, instructed LLMs outperform both the small SOTA models and similar-scaled LLMs without instruction tuning. Based on our findings, we further present practical implications on model and usage recommendation, performance and cost trade-offs, and future direction.