Goto

Collaborating Authors

 Yuan, Xin


Transfer Learning in Vocal Education: Technical Evaluation of Limited Samples Describing Mezzo-soprano

arXiv.org Artificial Intelligence

Vocal education in the music field is difficult to quantify due to the individual differences in singers' voices and the different quantitative criteria of singing techniques. Deep learning has great potential to be applied in music education due to its efficiency to handle complex data and perform quantitative analysis. However, accurate evaluations with limited samples over rare vocal types, such as Mezzo-soprano, requires extensive well-annotated data support using deep learning models. In order to attain the objective, we perform transfer learning by employing deep learning models pre-trained on the ImageNet and Urbansound8k datasets for the improvement on the precision of vocal technique evaluation. Furthermore, we tackle the problem of the lack of samples by constructing a dedicated dataset, the Mezzo-soprano Vocal Set (MVS), for vocal technique assessment. Our experimental results indicate that transfer learning increases the overall accuracy (OAcc) of all models by an average of 8.3%, with the highest accuracy at 94.2%. We not only provide a novel approach to evaluating Mezzo-soprano vocal techniques but also introduce a new quantitative assessment method for music education.


Paths-over-Graph: Knowledge Graph Empowered Large Language Model Reasoning

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have achieved impressive results in various tasks but struggle with hallucination problems and lack of relevant knowledge, especially in deep complex reasoning and knowledge-intensive tasks. Knowledge Graphs (KGs), which capture vast amounts of facts in a structured format, offer a reliable source of knowledge for reasoning. However, existing KG-based LLM reasoning methods face challenges like handling multi-hop reasoning, multi-entity questions, and effectively utilizing graph structures. To address these issues, we propose Paths-over-Graph (PoG), a novel method that enhances LLM reasoning by integrating knowledge reasoning paths from KGs, improving the interpretability and faithfulness of LLM outputs. PoG tackles multi-hop and multi-entity questions through a three-phase dynamic multi-hop path exploration, which combines the inherent knowledge of LLMs with factual knowledge from KGs. In order to improve the efficiency, PoG prunes irrelevant information from the graph exploration first and introduces efficient three-step pruning techniques that incorporate graph structures, LLM prompting, and a pre-trained language model (e.g., SBERT) to effectively narrow down the explored candidate paths. This ensures all reasoning paths contain highly relevant information captured from KGs, making the reasoning faithful and interpretable in problem-solving. PoG innovatively utilizes graph structure to prune the irrelevant noise and represents the first method to implement multi-entity deep path detection on KGs for LLM reasoning tasks. Comprehensive experiments on five benchmark KGQA datasets demonstrate PoG outperforms the state-of-the-art method ToG across GPT-3.5-Turbo and GPT-4, achieving an average accuracy improvement of 18.9%. Notably, PoG with GPT-3.5-Turbo surpasses ToG with GPT-4 by up to 23.9%.


A Novel Framework of Horizontal-Vertical Hybrid Federated Learning for EdgeIoT

arXiv.org Artificial Intelligence

This letter puts forth a new hybrid horizontal-vertical federated learning (HoVeFL) for mobile edge computing-enabled Internet of Things (EdgeIoT). In this framework, certain EdgeIoT devices train local models using the same data samples but analyze disparate data features, while the others focus on the same features using non-independent and identically distributed (non-IID) data samples. Thus, even though the data features are consistent, the data samples vary across devices. The proposed HoVeFL formulates the training of local and global models to minimize the global loss function. Performance evaluations on CIFAR-10 and SVHN datasets reveal that the testing loss of HoVeFL with 12 horizontal FL devices and six vertical FL devices is 5.5% and 25.2% higher, respectively, compared to a setup with six horizontal FL devices and 12 vertical FL devices.


A QoE-Aware Split Inference Accelerating Algorithm for NOMA-based Edge Intelligence

arXiv.org Artificial Intelligence

Even the AI has been widely used and significantly changed our life, deploying the large AI models on resource limited edge devices directly is not appropriate. Thus, the model split inference is proposed to improve the performance of edge intelligence, in which the AI model is divided into different sub models and the resource-intensive sub model is offloaded to edge server wirelessly for reducing resource requirements and inference latency. However, the previous works mainly concentrate on improving and optimizing the system QoS, ignore the effect of QoE which is another critical item for the users except for QoS. Even the QoE has been widely learned in EC, considering the differences between task offloading in EC and split inference in EI, and the specific issues in QoE which are still not addressed in EC and EI, these algorithms cannot work effectively in edge split inference scenarios. Thus, an effective resource allocation algorithm is proposed in this paper, for accelerating split inference in EI and achieving the tradeoff between inference delay, QoE, and resource consumption, abbreviated as ERA. Specifically, the ERA takes the resource consumption, QoE, and inference latency into account to find the optimal model split strategy and resource allocation strategy. Since the minimum inference delay and resource consumption, and maximum QoE cannot be satisfied simultaneously, the gradient descent based algorithm is adopted to find the optimal tradeoff between them. Moreover, the loop iteration GD approach is developed to reduce the complexity of the GD algorithm caused by parameter discretization. Additionally, the properties of the proposed algorithms are investigated, including convergence, complexity, and approximation error. The experimental results demonstrate that the performance of ERA is much better than that of the previous studies.


Learning Autonomous Race Driving with Action Mapping Reinforcement Learning

arXiv.org Artificial Intelligence

Autonomous race driving poses a complex control challenge as vehicles must be operated at the edge of their handling limits to reduce lap times while respecting physical and safety constraints. This paper presents a novel reinforcement learning (RL)-based approach, incorporating the action mapping (AM) mechanism to manage state-dependent input constraints arising from limited tire-road friction. A numerical approximation method is proposed to implement AM, addressing the complex dynamics associated with the friction constraints. The AM mechanism also allows the learned driving policy to be generalized to different friction conditions. Experimental results in our developed race simulator demonstrate that the proposed AM-RL approach achieves superior lap times and better success rates compared to the conventional RL-based approaches. The generalization capability of driving policy with AM is also validated in the experiments.


Generative Lifting of Multiview to 3D from Unknown Pose: Wrapping NeRF inside Diffusion

arXiv.org Artificial Intelligence

We cast multiview reconstruction from unknown pose as a generative modeling problem. From a collection of unannotated 2D images of a scene, our approach simultaneously learns both a network to predict camera pose from 2D image input, as well as the parameters of a Neural Radiance Field (NeRF) for the 3D scene. To drive learning, we wrap both the pose prediction network and NeRF inside a Denoising Diffusion Probabilistic Model (DDPM) and train the system via the standard denoising objective. Our framework requires the system accomplish the task of denoising an input 2D image by predicting its pose and rendering the NeRF from that pose. Learning to denoise thus forces the system to concurrently learn the underlying 3D NeRF representation and a mapping from images to camera extrinsic parameters. To facilitate the latter, we design a custom network architecture to represent pose as a distribution, granting implicit capacity for discovering view correspondences when trained end-to-end for denoising alone. This technique allows our system to successfully build NeRFs, without pose knowledge, for challenging scenes where competing methods fail. At the conclusion of training, our learned NeRF can be extracted and used as a 3D scene model; our full system can be used to sample novel camera poses and generate novel-view images.


2DQuant: Low-bit Post-Training Quantization for Image Super-Resolution

arXiv.org Artificial Intelligence

Low-bit quantization has become widespread for compressing image super-resolution (SR) models for edge deployment, which allows advanced SR models to enjoy compact low-bit parameters and efficient integer/bitwise constructions for storage compression and inference acceleration, respectively. However, it is notorious that low-bit quantization degrades the accuracy of SR models compared to their full-precision (FP) counterparts. Despite several efforts to alleviate the degradation, the transformer-based SR model still suffers severe degradation due to its distinctive activation distribution. In this work, we present a dual-stage low-bit post-training quantization (PTQ) method for image super-resolution, namely 2DQuant, which achieves efficient and accurate SR under low-bit quantization. The proposed method first investigates the weight and activation and finds that the distribution is characterized by coexisting symmetry and asymmetry, long tails. Specifically, we propose Distribution-Oriented Bound Initialization (DOBI), using different searching strategies to search a coarse bound for quantizers. To obtain refined quantizer parameters, we further propose Distillation Quantization Calibration (DQC), which employs a distillation approach to make the quantized model learn from its FP counterpart. Through extensive experiments on different bits and scaling factors, the performance of DOBI can reach the state-of-the-art (SOTA) while after stage two, our method surpasses existing PTQ in both metrics and visual effects. 2DQuant gains an increase in PSNR as high as 4.52dB on Set5 (x2) compared with SOTA when quantized to 2-bit and enjoys a 3.60x compression ratio and 5.08x speedup ratio. The code and models will be available at https://github.com/Kai-Liu001/2DQuant.


A Novel Defense Against Poisoning Attacks on Federated Learning: LayerCAM Augmented with Autoencoder

arXiv.org Artificial Intelligence

Recent attacks on federated learning (FL) can introduce malicious model updates that circumvent widely adopted Euclidean distance-based detection methods. This paper proposes a novel defense strategy, referred to as LayerCAM-AE, designed to counteract model poisoning in federated learning. The LayerCAM-AE puts forth a new Layer Class Activation Mapping (LayerCAM) integrated with an autoencoder (AE), significantly enhancing detection capabilities. Specifically, LayerCAM-AE generates a heat map for each local model update, which is then transformed into a more compact visual format. The autoencoder is designed to process the LayerCAM heat maps from the local model updates, improving their distinctiveness and thereby increasing the accuracy in spotting anomalous maps and malicious local models. To address the risk of misclassifications with LayerCAM-AE, a voting algorithm is developed, where a local model update is flagged as malicious if its heat maps are consistently suspicious over several rounds of communication. Extensive tests of LayerCAM-AE on the SVHN and CIFAR-100 datasets are performed under both Independent and Identically Distributed (IID) and non-IID settings in comparison with existing ResNet-50 and REGNETY-800MF defense models. Experimental results show that LayerCAM-AE increases detection rates (Recall: 1.0, Precision: 1.0, FPR: 0.0, Accuracy: 1.0, F1 score: 1.0, AUC: 1.0) and test accuracy in FL, surpassing the performance of both the ResNet-50 and REGNETY-800MF. Our code is available at: https://github.com/jjzgeeks/LayerCAM-AE


A First Look at GPT Apps: Landscape and Vulnerability

arXiv.org Artificial Intelligence

Following OpenAI's introduction of GPTs, a surge in GPT apps has led to the launch of dedicated LLM app stores. Nevertheless, given its debut, there is a lack of sufficient understanding of this new ecosystem. To fill this gap, this paper presents a first comprehensive longitudinal (5-month) study of the evolution, landscape, and vulnerability of the emerging LLM app ecosystem, focusing on two GPT app stores: \textit{GPTStore.AI} and the official \textit{OpenAI GPT Store}. Specifically, we develop two automated tools and a TriLevel configuration extraction strategy to efficiently gather metadata (\ie names, creators, descriptions, \etc) and user feedback for all GPT apps across these two stores, as well as configurations (\ie system prompts, knowledge files, and APIs) for the top 10,000 popular apps. Our extensive analysis reveals: (1) the user enthusiasm for GPT apps consistently rises, whereas creator interest plateaus within three months of GPTs' launch; (2) nearly 90\% system prompts can be easily accessed due to widespread failure to secure GPT app configurations, leading to considerable plagiarism and duplication among apps. Our findings highlight the necessity of enhancing the LLM app ecosystem by the app stores, creators, and users.


Leverage Variational Graph Representation For Model Poisoning on Federated Learning

arXiv.org Artificial Intelligence

This paper puts forth a new training data-untethered model poisoning (MP) attack on federated learning (FL). The new MP attack extends an adversarial variational graph autoencoder (VGAE) to create malicious local models based solely on the benign local models overheard without any access to the training data of FL. Such an advancement leads to the VGAE-MP attack that is not only efficacious but also remains elusive to detection. VGAE-MP attack extracts graph structural correlations among the benign local models and the training data features, adversarially regenerates the graph structure, and generates malicious local models using the adversarial graph structure and benign models' features. Moreover, a new attacking algorithm is presented to train the malicious local models using VGAE and sub-gradient descent, while enabling an optimal selection of the benign local models for training the VGAE. Experiments demonstrate a gradual drop in FL accuracy under the proposed VGAE-MP attack and the ineffectiveness of existing defense mechanisms in detecting the attack, posing a severe threat to FL.