Yuan, Wenzhen
Social Gesture Recognition in spHRI: Leveraging Fabric-Based Tactile Sensing on Humanoid Robots
Crowder, Dakarai, Vandyck, Kojo, Sun, Xiping, McCann, James, Yuan, Wenzhen
Abstract-- Humans are able to convey different messages using only touch. Equipping robots with the ability to understand social touch adds another modality in which humans and robots can communicate. In this paper, we present a social gesture recognition system using a fabric-based, largescale tactile sensor placed onto the arms of a humanoid robot. We built a social gesture dataset using multiple participants and extracted temporal features for classification. By collecting tactile data on a humanoid robot, our system provides insights into human-robot social touch, and displays that the use of fabric based sensors could be a potential way of advancing the development of spHRI systems for more natural and effective communication. I. INTRODUCTION Humans interact with each other using many differing modalities and touch is one that occurs naturally.
Sensor-Invariant Tactile Representation
Gupta, Harsh, Mo, Yuchen, Jin, Shengmiao, Yuan, Wenzhen
High-resolution tactile sensors have become critical for embodied perception and robotic manipulation. However, a key challenge in the field is the lack of transferability between sensors due to design and manufacturing variations, which result in significant differences in tactile signals. This limitation hinders the ability to transfer models or knowledge learned from one sensor to another. To address this, we introduce a novel method for extracting Sensor-Invariant Tactile Representations (SITR), enabling zero-shot transfer across optical tactile sensors. Our approach utilizes a transformer-based architecture trained on a diverse dataset of simulated sensor designs, allowing it to generalize to new sensors in the real world with minimal calibration. Experimental results demonstrate the method's effectiveness across various tactile sensing applications, facilitating data and model transferability for future advancements in the field.
Learning to Double Guess: An Active Perception Approach for Estimating the Center of Mass of Arbitrary Objects
Jin, Shengmiao, Mo, Yuchen, Yuan, Wenzhen
Abstract-- Manipulating arbitrary objects in unstructured environments is a significant challenge in robotics, primarily due to difficulties in determining an object's center of mass. This paper introduces U-GRAPH: Uncertainty-Guided Rotational Active Perception with Haptics, a novel framework to enhance the center of mass estimation using active perception. Traditional methods often rely on single interaction and are limited by the inherent inaccuracies of Force-Torque (F/T) sensors. Our approach circumvents these limitations by integrating a Bayesian Neural Network (BNN) to quantify uncertainty and guide the robotic system through multiple, information-rich interactions via grid search and a neural network that scores each action. We demonstrate the remarkable generalizability and transferability of our method with training on a small dataset with limited variation yet still perform well on unseen complex real-world objects. With the growing interest in robotics manipulation in the wild, researchers have been investigating ways for robots to Figure 1: We design an active perception algorithm to estimate interact with different objects. Our algorithm uses the secure grasp is the proximity of the grasp point to the object's first estimation from the F/T reading to infer a new rotational center of mass (CoM).
GelBelt: A Vision-based Tactile Sensor for Continuous Sensing of Large Surfaces
Mirzaee, Mohammad Amin, Huang, Hung-Jui, Yuan, Wenzhen
Abstract-- Scanning large-scale surfaces is widely demanded in surface reconstruction applications and detecting defects in industries' quality control and maintenance stages. Traditional vision-based tactile sensors have shown promising performance in high-resolution shape reconstruction while suffering limitations such as small sensing areas or susceptibility to damage when slid across surfaces, making them unsuitable for continuous sensing on large surfaces. To address these shortcomings, we introduce a novel vision-based tactile sensor designed for continuous surface sensing applications. Our design uses an elastomeric belt and two wheels to continuously scan the target surface. The proposed sensor showed promising results in both shape reconstruction and surface fusion, indicating its applicability. The dot product of the estimated and reference surface normal map is reported over the sensing area and for different scanning speeds. Results indicate that the proposed sensor can rapidly scan large-scale surfaces with high accuracy at speeds up to 45 mm/s.
NormalFlow: Fast, Robust, and Accurate Contact-based Object 6DoF Pose Tracking with Vision-based Tactile Sensors
Huang, Hung-Jui, Kaess, Michael, Yuan, Wenzhen
Tactile sensing is crucial for robots aiming to achieve human-level dexterity. Among tactile-dependent skills, tactile-based object tracking serves as the cornerstone for many tasks, including manipulation, in-hand manipulation, and 3D reconstruction. In this work, we introduce NormalFlow, a fast, robust, and real-time tactile-based 6DoF tracking algorithm. Leveraging the precise surface normal estimation of vision-based tactile sensors, NormalFlow determines object movements by minimizing discrepancies between the tactile-derived surface normals. Our results show that NormalFlow consistently outperforms competitive baselines and can track low-texture objects like table surfaces. For long-horizon tracking, we demonstrate when rolling the sensor around a bead for 360 degrees, NormalFlow maintains a rotational tracking error of 2.5 degrees. Additionally, we present state-of-the-art tactile-based 3D reconstruction results, showcasing the high accuracy of NormalFlow. We believe NormalFlow unlocks new possibilities for high-precision perception and manipulation tasks that involve interacting with objects using hands. The video demo, code, and dataset are available on our website: https://joehjhuang.github.io/normalflow.
FusionSense: Bridging Common Sense, Vision, and Touch for Robust Sparse-View Reconstruction
Fang, Irving, Shi, Kairui, He, Xujin, Tan, Siqi, Wang, Yifan, Zhao, Hanwen, Huang, Hung-Jui, Yuan, Wenzhen, Feng, Chen, Zhang, Jing
Humans effortlessly integrate common-sense knowledge with sensory input from vision and touch to understand their surroundings. Emulating this capability, we introduce FusionSense, a novel 3D reconstruction framework that enables robots to fuse priors from foundation models with highly sparse observations from vision and tactile sensors. FusionSense addresses three key challenges: (i) How can robots efficiently acquire robust global shape information about the surrounding scene and objects? (ii) How can robots strategically select touch points on the object using geometric and common-sense priors? (iii) How can partial observations such as tactile signals improve the overall representation of the object? Our framework employs 3D Gaussian Splatting as a core representation and incorporates a hierarchical optimization strategy involving global structure construction, object visual hull pruning and local geometric constraints. This advancement results in fast and robust perception in environments with traditionally challenging objects that are transparent, reflective, or dark, enabling more downstream manipulation or navigation tasks. Experiments on real-world data suggest that our framework outperforms previously state-of-the-art sparse-view methods. All code and data are open-sourced on the project website.
An Intelligent Robotic System for Perceptive Pancake Batter Stirring and Precise Pouring
Luo, Xinyuan, Jin, Shengmiao, Huang, Hung-Jui, Yuan, Wenzhen
Cooking robots have long been desired by the commercial market, while the technical challenge is still significant. A major difficulty comes from the demand of perceiving and handling liquid with different properties. This paper presents a robot system that mixes batter and makes pancakes out of it, where understanding and handling the viscous liquid is an essential component. The system integrates Haptic Sensing and control algorithms to autonomously stir flour and water to achieve the desired batter uniformity, estimate the batter's properties such as the water-flour ratio and liquid level, as well as perform precise manipulations to pour the batter into any specified shape. Experimental results show the system's capability to always produce batter of desired uniformity, estimate water-flour ratio and liquid level precisely, and accurately pour it into complex shapes. This research showcases the potential for robots to assist in kitchens and step towards commercial culinary automation.
Scalable, Simulation-Guided Compliant Tactile Finger Design
Ma, Yuxiang, Agarwal, Arpit, Liu, Sandra Q., Yuan, Wenzhen, Adelson, Edward H.
Compliant grippers enable robots to work with humans in unstructured environments. In general, these grippers can improve with tactile sensing to estimate the state of objects around them to precisely manipulate objects. However, co-designing compliant structures with high-resolution tactile sensing is a challenging task. We propose a simulation framework for the end-to-end forward design of GelSight Fin Ray sensors. Our simulation framework consists of mechanical simulation using the finite element method (FEM) and optical simulation including physically based rendering (PBR). To simulate the fluorescent paint used in these GelSight Fin Rays, we propose an efficient method that can be directly integrated in PBR. Using the simulation framework, we investigate design choices available in the compliant grippers, namely gel pad shapes, illumination conditions, Fin Ray gripper sizes, and Fin Ray stiffness. This infrastructure enables faster design and prototype time frames of new Fin Ray sensors that have various sensing areas, ranging from 48 mm $\times$ \18 mm to 70 mm $\times$ 35 mm. Given the parameters we choose, we can thus optimize different Fin Ray designs and show their utility in grasping day-to-day objects.
Kitchen Artist: Precise Control of Liquid Dispensing for Gourmet Plating
Huang, Hung-Jui, Xiang, Jingyi, Yuan, Wenzhen
Manipulating liquid is widely required for many tasks, especially in cooking. A common way to address this is extruding viscous liquid from a squeeze bottle. In this work, our goal is to create a sauce plating robot, which requires precise control of the thickness of squeezed liquids on a surface. Different liquids demand different manipulation policies. We command the robot to tilt the container and monitor the liquid response using a force sensor to identify liquid properties. Based on the liquid properties, we predict the liquid behavior with fixed squeezing motions in a data-driven way and calculate the required drawing speed for the desired stroke size. This open-loop system works effectively even without sensor feedback. Our experiments demonstrate accurate stroke size control across different liquids and fill levels. We show that understanding liquid properties can facilitate effective liquid manipulation. More importantly, our dish garnishing robot has a wide range of applications and holds significant commercialization potential.
Robotic Defect Inspection with Visual and Tactile Perception for Large-scale Components
Agarwal, Arpit, Ajith, Abhiroop, Wen, Chengtao, Stryzheus, Veniamin, Miller, Brian, Chen, Matthew, Johnson, Micah K., Rincon, Jose Luis Susa, Rosca, Justinian, Yuan, Wenzhen
In manufacturing processes, surface inspection is a key requirement for quality assessment and damage localization. Due to this, automated surface anomaly detection has become a promising area of research in various industrial inspection systems. A particular challenge in industries with large-scale components, like aircraft and heavy machinery, is inspecting large parts with very small defect dimensions. Moreover, these parts can be of curved shapes. To address this challenge, we present a 2-stage multi-modal inspection pipeline with visual and tactile sensing. Our approach combines the best of both visual and tactile sensing by identifying and localizing defects using a global view (vision) and using the localized area for tactile scanning for identifying remaining defects. To benchmark our approach, we propose a novel real-world dataset with multiple metallic defect types per image, collected in the production environments on real aerospace manufacturing parts, as well as online robot experiments in two environments. Our approach is able to identify 85% defects using Stage I and identify 100% defects after Stage II. The dataset is publicly available at https://zenodo.org/record/8327713