Goto

Collaborating Authors

 Yuan, Wanmai


A Policy Resonance Approach to Solve the Problem of Responsibility Diffusion in Multiagent Reinforcement Learning

arXiv.org Artificial Intelligence

SOTA multiagent reinforcement algorithms distinguish themselves in many ways from their single-agent equivalences. However, most of them still totally inherit the single-agent exploration-exploitation strategy. Naively inheriting this strategy from single-agent algorithms causes potential collaboration failures, in which the agents blindly follow mainstream behaviors and reject taking minority responsibility. We name this problem the Responsibility Diffusion (RD) as it shares similarities with a same-name social psychology effect. In this work, we start by theoretically analyzing the cause of this RD problem, which can be traced back to the exploration-exploitation dilemma of multiagent systems (especially large-scale multiagent systems). We address this RD problem by proposing a Policy Resonance (PR) approach which modifies the collaborative exploration strategy of agents by refactoring the joint agent policy while keeping individual policies approximately invariant. Next, we show that SOTA algorithms can equip this approach to promote the collaborative performance of agents in complex cooperative tasks. Experiments are performed in multiple test benchmark tasks to illustrate the effectiveness of this approach.


Learning Heterogeneous Agent Cooperation via Multiagent League Training

arXiv.org Artificial Intelligence

Many multiagent systems in the real world include multiple types of agents with different abilities and functionality. Such heterogeneous multiagent systems have significant practical advantages. However, they also come with challenges compared with homogeneous systems for multiagent reinforcement learning, such as the non-stationary problem and the policy version iteration issue. This work proposes a general-purpose reinforcement learning algorithm named Heterogeneous League Training (HLT) to address heterogeneous multiagent problems. HLT keeps track of a pool of policies that agents have explored during training, gathering a league of heterogeneous policies to facilitate future policy optimization. Moreover, a hyper-network is introduced to increase the diversity of agent behaviors when collaborating with teammates having different levels of cooperation skills. We use heterogeneous benchmark tasks to demonstrate that (1) HLT promotes the success rate in cooperative heterogeneous tasks; (2) HLT is an effective approach to solving the policy version iteration problem; (3) HLT provides a practical way to assess the difficulty of learning each role in a heterogeneous team.