Not enough data to create a plot.
Try a different view from the menu above.
Yuan, Mingxuan
Beyond Standard MoE: Mixture of Latent Experts for Resource-Efficient Language Models
Liu, Zehua, Wu, Han, She, Ruifeng, Fu, Xiaojin, Han, Xiongwei, Zhong, Tao, Yuan, Mingxuan
Mixture of Experts (MoE) has emerged as a pivotal architectural paradigm for efficient scaling of Large Language Models (LLMs), operating through selective activation of parameter subsets for each input token. Nevertheless, conventional MoE architectures encounter substantial challenges, including excessive memory utilization and communication overhead during training and inference, primarily attributable to the proliferation of expert modules. In this paper, we introduce Mixture of Latent Experts (MoLE), a novel parameterization methodology that facilitates the mapping of specific experts into a shared latent space. Specifically, all expert operations are systematically decomposed into two principal components: a shared projection into a lower-dimensional latent space, followed by expert-specific transformations with significantly reduced parametric complexity. This factorized approach substantially diminishes parameter count and computational requirements. Beyond the pretraining implementation of the MoLE architecture, we also establish a rigorous mathematical framework for transforming pre-trained MoE models into the MoLE architecture, characterizing the sufficient conditions for optimal factorization and developing a systematic two-phase algorithm for this conversion process. Our comprehensive theoretical analysis demonstrates that MoLE significantly enhances computational efficiency across multiple dimensions while preserving model representational capacity. Empirical evaluations corroborate our theoretical findings, confirming that MoLE achieves performance comparable to standard MoE implementations while substantially reducing resource requirements.
Unlocking Efficient Long-to-Short LLM Reasoning with Model Merging
Wu, Han, Yao, Yuxuan, Liu, Shuqi, Liu, Zehua, Fu, Xiaojin, Han, Xiongwei, Li, Xing, Zhen, Hui-Ling, Zhong, Tao, Yuan, Mingxuan
The transition from System 1 to System 2 reasoning in large language models (LLMs) has marked significant advancements in handling complex tasks through deliberate, iterative thinking. However, this progress often comes at the cost of efficiency, as models tend to overthink, generating redundant reasoning steps without proportional improvements in output quality. Long-to-Short (L2S) reasoning has emerged as a promising solution to this challenge, aiming to balance reasoning depth with practical efficiency. While existing approaches, such as supervised fine-tuning (SFT), reinforcement learning (RL), and prompt engineering, have shown potential, they are either computationally expensive or unstable. Model merging, on the other hand, offers a cost-effective and robust alternative by integrating the quick-thinking capabilities of System 1 models with the methodical reasoning of System 2 models. In this work, we present a comprehensive empirical study on model merging for L2S reasoning, exploring diverse methodologies, including task-vector-based, SVD-based, and activation-informed merging. Our experiments reveal that model merging can reduce average response length by up to 55% while preserving or even improving baseline performance. We also identify a strong correlation between model scale and merging efficacy with extensive evaluations on 1.5B/7B/14B/32B models. Furthermore, we investigate the merged model's ability to self-critique and self-correct, as well as its adaptive response length based on task complexity. Our findings highlight model merging as a highly efficient and effective paradigm for L2S reasoning, offering a practical solution to the overthinking problem while maintaining the robustness of System 2 reasoning. This work can be found on Github https://github.com/hahahawu/Long-to-Short-via-Model-Merging.
Open3DBench: Open-Source Benchmark for 3D-IC Backend Implementation and PPA Evaluation
Shi, Yunqi, Gao, Chengrui, Ren, Wanqi, Xu, Siyuan, Xue, Ke, Yuan, Mingxuan, Qian, Chao, Zhou, Zhi-Hua
This work introduces Open3DBench, an open-source 3D-IC backend implementation benchmark built upon the OpenROAD-flow-scripts framework, enabling comprehensive evaluation of power, performance, area, and thermal metrics. Our proposed flow supports modular integration of 3D partitioning, placement, 3D routing, RC extraction, and thermal simulation, aligning with advanced 3D flows that rely on commercial tools and in-house scripts. We present two foundational 3D placement algorithms: Open3D-Tiling, which emphasizes regular macro placement, and Open3D-DMP, which enhances wirelength optimization through cross-die co-placement with analytical placer DREAMPlace. Experimental results show significant improvements in area (51.19%), wirelength (24.06%), timing (30.84%), and power (5.72%) compared to 2D flows. The results also highlight that better wirelength does not necessarily lead to PPA gain, emphasizing the need of developing PPA-driven methods. Open3DBench offers a standardized, reproducible platform for evaluating 3D EDA methods, effectively bridging the gap between open-source tools and commercial solutions in 3D-IC design.
ARS: Automatic Routing Solver with Large Language Models
Li, Kai, Liu, Fei, Wang, Zhenkun, Tong, Xialiang, Han, Xiongwei, Yuan, Mingxuan
Real-world Vehicle Routing Problems (VRPs) are characterized by a variety of practical constraints, making manual solver design both knowledge-intensive and time-consuming. Although there is increasing interest in automating the design of routing algorithms, existing research has explored only a limited array of VRP variants and fails to adequately address the complex and prevalent constraints encountered in real-world situations. To fill this gap, this paper introduces RoutBench, a benchmark of 1,000 VRP variants derived from 24 attributes, for evaluating the effectiveness of automatic routing solvers in addressing complex constraints. Along with RoutBench, we present the Automatic Routing Solver (ARS), which employs Large Language Model (LLM) agents to enhance a backbone algorithm framework by automatically generating constraint-aware heuristic code, based on problem descriptions and several representative constraints selected from a database. Our experiments show that ARS outperforms state-of-the-art LLM-based methods and commonly used solvers, automatically solving 91.67% of common VRPs and achieving at least a 30% improvement across all benchmarks.
Timing-Driven Global Placement by Efficient Critical Path Extraction
Shi, Yunqi, Xu, Siyuan, Kai, Shixiong, Lin, Xi, Xue, Ke, Yuan, Mingxuan, Qian, Chao
Initially, vanilla DREAMPlace [20] is run to distribute the cells within the layout. Subsequently, we perform a path-level timing analysis every m rounds to extract critical paths and update the pin-to-pin loss. This involves report_timing_endpoint(n,1), where n denotes the number of all failing endpoints, to collect data on critical paths. As we traverse these paths, each pin pair (i, j) involved is added to a maintained set P, unless it has already been included. To address the path-sharing effect, the weight w ( i,j) of each pin pair is dynamically updated as follows: w ( i,j) = null w 0, if ( i, j) / P, w (i,j) + w 1 (slack/ WNS), otherwise, (9) where w 0 and w 1 are hyperparameters, and slack indicates the negative slack of the respective critical path. The pin-to-pin attraction loss PP (x, y) of the layout is then computed as: PP (x, y) = null (i,j) P w ( i,j) Q(i, j), (10) with Q(i, j) and w (i,j) defined in Eqs. 8 and 9, respectively. After defining the loss function properly, we implement the CUDA kernel of PP loss for GPU-acceleration.
PASER: Post-Training Data Selection for Efficient Pruned Large Language Model Recovery
He, Bowei, Yin, Lihao, Zhen, Hui-Ling, Zhang, Xiaokun, Yuan, Mingxuan, Ma, Chen
Model pruning is an effective approach for compressing large language models. However, this process often leads to significant degradation of model capabilities. While post-training techniques such as instruction tuning are commonly employed to recover model performance, existing methods often overlook the uneven deterioration of model capabilities and incur high computational costs. Moreover, some instruction data irrelevant to model capability recovery may introduce negative effects. To address these challenges, we propose the \textbf{P}ost-training d\textbf{A}ta \textbf{S}election method for \textbf{E}fficient pruned large language model \textbf{R}ecovery (\textbf{PASER}). PASER aims to identify instructions where model capabilities are most severely compromised within a certain recovery data budget. Our approach first applies manifold learning and spectral clustering to group recovery data in the semantic space, revealing capability-specific instruction sets. We then adaptively allocate the data budget to different clusters based on the degrees of model capability degradation. In each cluster, we prioritize data samples where model performance has declined dramatically. To mitigate potential negative transfer, we also detect and filter out conflicting or irrelevant recovery data. Extensive experiments demonstrate that PASER significantly outperforms conventional baselines, effectively recovering the general capabilities of pruned LLMs while utilizing merely 4\%-20\% of the original post-training data.
Sens-Merging: Sensitivity-Guided Parameter Balancing for Merging Large Language Models
Liu, Shuqi, Wu, Han, He, Bowei, Han, Xiongwei, Yuan, Mingxuan, Song, Linqin
Recent advances in large language models have led to numerous task-specialized fine-tuned variants, creating a need for efficient model merging techniques that preserve specialized capabilities while avoiding costly retraining. While existing task vector-based merging methods show promise, they typically apply uniform coefficients across all parameters, overlooking varying parameter importance both within and across tasks. We present Sens-Merging, a sensitivity-guided coefficient adjustment method that enhances existing model merging techniques by operating at both task-specific and cross-task levels. Our method analyzes parameter sensitivity within individual tasks and evaluates cross-task transferability to determine optimal merging coefficients. Extensive experiments on Mistral 7B and LLaMA2-7B/13B models demonstrate that Sens-Merging significantly improves performance across general knowledge, mathematical reasoning, and code generation tasks. Notably, when combined with existing merging techniques, our method enables merged models to outperform specialized fine-tuned models, particularly in code generation tasks. Our findings reveal important trade-offs between task-specific and cross-task scalings, providing insights for future model merging strategies.
1bit-Merging: Dynamic Quantized Merging for Large Language Models
Liu, Shuqi, Wu, Han, He, Bowei, Liu, Zehua, Han, Xiongwei, Yuan, Mingxuan, Song, Linqi
Recent advances in large language models have led to specialized models excelling in specific domains, creating a need for efficient model merging techniques. While traditional merging approaches combine parameters into a single static model, they often compromise task-specific performance. However, task-specific routing methods maintain accuracy but introduce substantial storage overhead. We present \texttt{1bit}-Merging, a novel framework that integrates task-specific routing with 1-bit quantized task vectors to balance performance and storage efficiency. Our approach leverages the observation that different task-specific models store knowledge in distinct layers-chat models primarily in attention layers and math/code models in MLP layers-enabling targeted compression strategies. Through extensive experiments with LLaMA2 and Mistral model families across chat, mathematical reasoning, and code generation tasks, we demonstrate that \texttt{1bit}-Merging achieves comparable or superior performance to existing methods while significantly reducing storage requirements. Our framework offers a practical solution for combining specialized models while maintaining their individual strengths and addressing the storage challenges of current approaches.
LoRE-Merging: Exploring Low-Rank Estimation For Large Language Model Merging
Liu, Zehua, Wu, Han, Yao, Yuxuan, She, Ruifeng, Han, Xiongwei, Zhong, Tao, Yuan, Mingxuan
While most current approaches rely on further training techniques, such as fine-tuning or reinforcement learning, to enhance model capacities, model merging stands out for its ability of improving models without requiring any additional training. In this paper, we propose a unified framework for model merging based on low-rank estimation of task vectors without the need for access to the base model, named \textsc{LoRE-Merging}. Our approach is motivated by the observation that task vectors from fine-tuned models frequently exhibit a limited number of dominant singular values, making low-rank estimations less prone to interference. We implement the method by formulating the merging problem as an optimization problem. Extensive empirical experiments demonstrate the effectiveness of our framework in mitigating interference and preserving task-specific information, thereby advancing the state-of-the-art performance in model merging techniques.
Certifying Language Model Robustness with Fuzzed Randomized Smoothing: An Efficient Defense Against Backdoor Attacks
He, Bowei, Yin, Lihao, Zhen, Hui-Ling, Zhang, Jianping, Hong, Lanqing, Yuan, Mingxuan, Ma, Chen
The widespread deployment of pre-trained language models (PLMs) has exposed them to textual backdoor attacks, particularly those planted during the pre-training stage. These attacks pose significant risks to high-reliability applications, as they can stealthily affect multiple downstream tasks. While certifying robustness against such threats is crucial, existing defenses struggle with the high-dimensional, interdependent nature of textual data and the lack of access to original poisoned pre-training data. To address these challenges, we introduce \textbf{F}uzzed \textbf{R}andomized \textbf{S}moothing (\textbf{FRS}), a novel approach for efficiently certifying language model robustness against backdoor attacks. FRS integrates software robustness certification techniques with biphased model parameter smoothing, employing Monte Carlo tree search for proactive fuzzing to identify vulnerable textual segments within the Damerau-Levenshtein space. This allows for targeted and efficient text randomization, while eliminating the need for access to poisoned training data during model smoothing. Our theoretical analysis demonstrates that FRS achieves a broader certified robustness radius compared to existing methods. Extensive experiments across various datasets, model configurations, and attack strategies validate FRS's superiority in terms of defense efficiency, accuracy, and robustness.