Yuan, Enming
MoBA: Mixture of Block Attention for Long-Context LLMs
Lu, Enzhe, Jiang, Zhejun, Liu, Jingyuan, Du, Yulun, Jiang, Tao, Hong, Chao, Liu, Shaowei, He, Weiran, Yuan, Enming, Wang, Yuzhi, Huang, Zhiqi, Yuan, Huan, Xu, Suting, Xu, Xinran, Lai, Guokun, Chen, Yanru, Zheng, Huabin, Yan, Junjie, Su, Jianlin, Wu, Yuxin, Zhang, Neo Y., Yang, Zhilin, Zhou, Xinyu, Zhang, Mingxing, Qiu, Jiezhong
Scaling the effective context length is essential for advancing large language models (LLMs) toward artificial general intelligence (AGI). However, the quadratic increase in computational complexity inherent in traditional attention mechanisms presents a prohibitive overhead. Existing approaches either impose strongly biased structures, such as sink or window attention which are task-specific, or radically modify the attention mechanism into linear approximations, whose performance in complex reasoning tasks remains inadequately explored. In this work, we propose a solution that adheres to the ``less structure'' principle, allowing the model to determine where to attend autonomously, rather than introducing predefined biases. We introduce Mixture of Block Attention (MoBA), an innovative approach that applies the principles of Mixture of Experts (MoE) to the attention mechanism. This novel architecture demonstrates superior performance on long-context tasks while offering a key advantage: the ability to seamlessly transition between full and sparse attention, enhancing efficiency without the risk of compromising performance. MoBA has already been deployed to support Kimi's long-context requests and demonstrates significant advancements in efficient attention computation for LLMs. Our code is available at https://github.com/MoonshotAI/MoBA.
Kimi k1.5: Scaling Reinforcement Learning with LLMs
Kimi Team, null, Du, Angang, Gao, Bofei, Xing, Bowei, Jiang, Changjiu, Chen, Cheng, Li, Cheng, Xiao, Chenjun, Du, Chenzhuang, Liao, Chonghua, Tang, Chuning, Wang, Congcong, Zhang, Dehao, Yuan, Enming, Lu, Enzhe, Tang, Fengxiang, Sung, Flood, Wei, Guangda, Lai, Guokun, Guo, Haiqing, Zhu, Han, Ding, Hao, Hu, Hao, Yang, Hao, Zhang, Hao, Yao, Haotian, Zhao, Haotian, Lu, Haoyu, Li, Haoze, Yu, Haozhen, Gao, Hongcheng, Zheng, Huabin, Yuan, Huan, Chen, Jia, Guo, Jianhang, Su, Jianlin, Wang, Jianzhou, Zhao, Jie, Zhang, Jin, Liu, Jingyuan, Yan, Junjie, Wu, Junyan, Shi, Lidong, Ye, Ling, Yu, Longhui, Dong, Mengnan, Zhang, Neo, Ma, Ningchen, Pan, Qiwei, Gong, Qucheng, Liu, Shaowei, Ma, Shengling, Wei, Shupeng, Cao, Sihan, Huang, Siying, Jiang, Tao, Gao, Weihao, Xiong, Weimin, He, Weiran, Huang, Weixiao, Wu, Wenhao, He, Wenyang, Wei, Xianghui, Jia, Xianqing, Wu, Xingzhe, Xu, Xinran, Zu, Xinxing, Zhou, Xinyu, Pan, Xuehai, Charles, Y., Li, Yang, Hu, Yangyang, Liu, Yangyang, Chen, Yanru, Wang, Yejie, Liu, Yibo, Qin, Yidao, Liu, Yifeng, Yang, Ying, Bao, Yiping, Du, Yulun, Wu, Yuxin, Wang, Yuzhi, Zhou, Zaida, Wang, Zhaoji, Li, Zhaowei, Zhu, Zhen, Zhang, Zheng, Wang, Zhexu, Yang, Zhilin, Huang, Zhiqi, Huang, Zihao, Xu, Ziyao, Yang, Zonghan
Language model pretraining with next token prediction has proved effective for scaling compute but is limited to the amount of available training data. Scaling reinforcement learning (RL) unlocks a new axis for the continued improvement of artificial intelligence, with the promise that large language models (LLMs) can scale their training data by learning to explore with rewards. However, prior published work has not produced competitive results. In light of this, we report on the training practice of Kimi k1.5, our latest multi-modal LLM trained with RL, including its RL training techniques, multi-modal data recipes, and infrastructure optimization. Long context scaling and improved policy optimization methods are key ingredients of our approach, which establishes a simplistic, effective RL framework without relying on more complex techniques such as Monte Carlo tree search, value functions, and process reward models. Notably, our system achieves state-of-the-art reasoning performance across multiple benchmarks and modalities -- e.g., 77.5 on AIME, 96.2 on MATH 500, 94-th percentile on Codeforces, 74.9 on MathVista -- matching OpenAI's o1. Moreover, we present effective long2short methods that use long-CoT techniques to improve short-CoT models, yielding state-of-the-art short-CoT reasoning results -- e.g., 60.8 on AIME, 94.6 on MATH500, 47.3 on LiveCodeBench -- outperforming existing short-CoT models such as GPT-4o and Claude Sonnet 3.5 by a large margin (up to +550%).
Compressed Interaction Graph based Framework for Multi-behavior Recommendation
Guo, Wei, Meng, Chang, Yuan, Enming, He, Zhicheng, Guo, Huifeng, Zhang, Yingxue, Chen, Bo, Hu, Yaochen, Tang, Ruiming, Li, Xiu, Zhang, Rui
Multi-types of user behavior data (e.g., clicking, adding to cart, and purchasing) are recorded in most real-world recommendation scenarios, which can help to learn users' multi-faceted preferences. However, it is challenging to explore multi-behavior data due to the unbalanced data distribution and sparse target behavior, which lead to the inadequate modeling of high-order relations when treating multi-behavior data ''as features'' and gradient conflict in multitask learning when treating multi-behavior data ''as labels''. In this paper, we propose CIGF, a Compressed Interaction Graph based Framework, to overcome the above limitations. Specifically, we design a novel Compressed Interaction Graph Convolution Network (CIGCN) to model instance-level high-order relations explicitly. To alleviate the potential gradient conflict when treating multi-behavior data ''as labels'', we propose a Multi-Expert with Separate Input (MESI) network with separate input on the top of CIGCN for multi-task learning. Comprehensive experiments on three large-scale real-world datasets demonstrate the superiority of CIGF. Ablation studies and in-depth analysis further validate the effectiveness of our proposed model in capturing high-order relations and alleviating gradient conflict. The source code and datasets are available at https://github.com/MC-CV/CIGF.