Yu Zhang
Learning to Multitask
Yu Zhang, Ying Wei, Qiang Yang
Multitask learning has shown promising performance in many applications and many multitask models have been proposed. In order to identify an effective multitask model for a given multitask problem, we propose a learning framework called Learning to MultiTask (L2MT). To achieve the goal, L2MT exploits historical multitask experience which is organized as a training set consisting of several tuples, each of which contains a multitask problem with multiple tasks, a multitask model, and the relative test error. Based on such training set, L2MT first uses a proposed layerwise graph neural network to learn task embeddings for all the tasks in a multitask problem and then learns an estimation function to estimate the relative test error based on task embeddings and the representation of the multitask model based on a unified formulation. Given a new multitask problem, the estimation function is used to identify a suitable multitask model. Experiments on benchmark datasets show the effectiveness of the proposed L2MT framework.
Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis
Ye Jia, Yu Zhang, Ron Weiss, Quan Wang, Jonathan Shen, Fei Ren, zhifeng Chen, Patrick Nguyen, Ruoming Pang, Ignacio Lopez Moreno, Yonghui Wu
We describe a neural network-based system for text-to-speech (TTS) synthesis that is able to generate speech audio in the voice of different speakers, including those unseen during training. Our system consists of three independently trained components: (1) a speaker encoder network, trained on a speaker verification task using an independent dataset of noisy speech without transcripts from thousands of speakers, to generate a fixed-dimensional embedding vector from only seconds of reference speech from a target speaker; (2) a sequence-to-sequence synthesis network based on Tacotron 2 that generates a mel spectrogram from text, conditioned on the speaker embedding; (3) an auto-regressive WaveNet-based vocoder network that converts the mel spectrogram into time domain waveform samples. We demonstrate that the proposed model is able to transfer the knowledge of speaker variability learned by the discriminatively-trained speaker encoder to the multispeaker TTS task, and is able to synthesize natural speech from speakers unseen during training. We quantify the importance of training the speaker encoder on a large and diverse speaker set in order to obtain the best generalization performance. Finally, we show that randomly sampled speaker embeddings can be used to synthesize speech in the voice of novel speakers dissimilar from those used in training, indicating that the model has learned a high quality speaker representation.
Learning to Multitask
Yu Zhang, Ying Wei, Qiang Yang
Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis
Ye Jia, Yu Zhang, Ron Weiss, Quan Wang, Jonathan Shen, Fei Ren, zhifeng Chen, Patrick Nguyen, Ruoming Pang, Ignacio Lopez Moreno, Yonghui Wu
We describe a neural network-based system for text-to-speech (TTS) synthesis that is able to generate speech audio in the voice of different speakers, including those unseen during training. Our system consists of three independently trained components: (1) a speaker encoder network, trained on a speaker verification task using an independent dataset of noisy speech without transcripts from thousands of speakers, to generate a fixed-dimensional embedding vector from only seconds of reference speech from a target speaker; (2) a sequence-to-sequence synthesis network based on Tacotron 2 that generates a mel spectrogram from text, conditioned on the speaker embedding; (3) an auto-regressive WaveNet-based vocoder network that converts the mel spectrogram into time domain waveform samples. We demonstrate that the proposed model is able to transfer the knowledge of speaker variability learned by the discriminatively-trained speaker encoder to the multispeaker TTS task, and is able to synthesize natural speech from speakers unseen during training. We quantify the importance of training the speaker encoder on a large and diverse speaker set in order to obtain the best generalization performance. Finally, we show that randomly sampled speaker embeddings can be used to synthesize speech in the voice of novel speakers dissimilar from those used in training, indicating that the model has learned a high quality speaker representation.
Unsupervised Learning of Disentangled and Interpretable Representations from Sequential Data
Wei-Ning Hsu, Yu Zhang, James Glass
We present a factorized hierarchical variational autoencoder, which learns disentangled and interpretable representations from sequential data without supervision. Specifically, we exploit the multi-scale nature of information in sequential data by formulating it explicitly within a factorized hierarchical graphical model that imposes sequence-dependent priors and sequence-independent priors to different sets of latent variables. The model is evaluated on two speech corpora to demonstrate, qualitatively, its ability to transform speakers or linguistic content by manipulating different sets of latent variables; and quantitatively, its ability to outperform an i-vector baseline for speaker verification and reduce the word error rate by as much as 35% in mismatched train/test scenarios for automatic speech recognition tasks.