Plotting

 Yu, Zichen


Q-PETR: Quant-aware Position Embedding Transformation for Multi-View 3D Object Detection

arXiv.org Artificial Intelligence

Camera-based multi-view 3D detection has emerged as an attractive solution for autonomous driving due to its low cost and broad applicability. However, despite the strong performance of PETR-based methods in 3D perception benchmarks, their direct INT8 quantization for onboard deployment leads to drastic accuracy drops-up to 58.2% in mAP and 36.9% in NDS on the NuScenes dataset. In this work, we propose Q-PETR, a quantization-aware position embedding transformation that re-engineers key components of the PETR framework to reconcile the discrepancy between the dynamic ranges of positional encodings and image features, and to adapt the cross-attention mechanism for low-bit inference. By redesigning the positional encoding module and introducing an adaptive quantization strategy, Q-PETR maintains floating-point performance with a performance degradation of less than 1% under standard 8-bit per-tensor post-training quantization. Moreover, compared to its FP32 counterpart, Q-PETR achieves a two-fold speedup and reduces memory usage by three times, thereby offering a deployment-friendly solution for resource-constrained onboard devices. Extensive experiments across various PETR-series models validate the strong generalization and practical benefits of our approach.


Decoding the Flow: CauseMotion for Emotional Causality Analysis in Long-form Conversations

arXiv.org Artificial Intelligence

Long-sequence causal reasoning seeks to uncover causal relationships within extended time series data but is hindered by complex dependencies and the challenges of validating causal links. To address the limitations of large-scale language models (e.g., GPT-4) in capturing intricate emotional causality within extended dialogues, we propose CauseMotion, a long-sequence emotional causal reasoning framework grounded in Retrieval-Augmented Generation (RAG) and multimodal fusion. Unlike conventional methods relying only on textual information, CauseMotion enriches semantic representations by incorporating audio-derived features-vocal emotion, emotional intensity, and speech rate-into textual modalities. By integrating RAG with a sliding window mechanism, it effectively retrieves and leverages contextually relevant dialogue segments, thus enabling the inference of complex emotional causal chains spanning multiple conversational turns. To evaluate its effectiveness, we constructed the first benchmark dataset dedicated to long-sequence emotional causal reasoning, featuring dialogues with over 70 turns. Experimental results demonstrate that the proposed RAG-based multimodal integrated approach, the efficacy of substantially enhances both the depth of emotional understanding and the causal inference capabilities of large-scale language models. A GLM-4 integrated with CauseMotion achieves an 8.7% improvement in causal accuracy over the original model and surpasses GPT-4o by 1.2%. Additionally, on the publicly available DiaASQ dataset, CauseMotion-GLM-4 achieves state-of-the-art results in accuracy, F1 score, and causal reasoning accuracy.


GSRender: Deduplicated Occupancy Prediction via Weakly Supervised 3D Gaussian Splatting

arXiv.org Artificial Intelligence

3D occupancy perception is gaining increasing attention due to its capability to offer detailed and precise environment representations. Previous weakly-supervised NeRF methods balance efficiency and accuracy, with mIoU varying by 5-10 points due to sampling count along camera rays. Recently, real-time Gaussian splatting has gained widespread popularity in 3D reconstruction, and the occupancy prediction task can also be viewed as a reconstruction task. Consequently, we propose GSRender, which naturally employs 3D Gaussian Splatting for occupancy prediction, simplifying the sampling process. In addition, the limitations of 2D supervision result in duplicate predictions along the same camera ray. We implemented the Ray Compensation (RC) module, which mitigates this issue by compensating for features from adjacent frames. Finally, we redesigned the loss to eliminate the impact of dynamic objects from adjacent frames. Extensive experiments demonstrate that our approach achieves SOTA (state-of-the-art) results in RayIoU (+6.0), while narrowing the gap with 3D supervision methods. Our code will be released soon.