Goto

Collaborating Authors

 Yu, Wenyong


AMI-Net: Adaptive Mask Inpainting Network for Industrial Anomaly Detection and Localization

arXiv.org Artificial Intelligence

Unsupervised visual anomaly detection is crucial for enhancing industrial production quality and efficiency. Among unsupervised methods, reconstruction approaches are popular due to their simplicity and effectiveness. The key aspect of reconstruction methods lies in the restoration of anomalous regions, which current methods have not satisfactorily achieved. To tackle this issue, we introduce a novel \uline{A}daptive \uline{M}ask \uline{I}npainting \uline{Net}work (AMI-Net) from the perspective of adaptive mask-inpainting. In contrast to traditional reconstruction methods that treat non-semantic image pixels as targets, our method uses a pre-trained network to extract multi-scale semantic features as reconstruction targets. Given the multiscale nature of industrial defects, we incorporate a training strategy involving random positional and quantitative masking. Moreover, we propose an innovative adaptive mask generator capable of generating adaptive masks that effectively mask anomalous regions while preserving normal regions. In this manner, the model can leverage the visible normal global contextual information to restore the masked anomalous regions, thereby effectively suppressing the reconstruction of defects. Extensive experimental results on the MVTec AD and BTAD industrial datasets validate the effectiveness of the proposed method. Additionally, AMI-Net exhibits exceptional real-time performance, striking a favorable balance between detection accuracy and speed, rendering it highly suitable for industrial applications. Code is available at: https://github.com/luow23/AMI-Net


Clear Memory-Augmented Auto-Encoder for Surface Defect Detection

arXiv.org Artificial Intelligence

In surface defect detection, due to the extreme imbalance in the number of positive and negative samples, positive-samples-based anomaly detection methods have received more and more attention. Specifically, reconstruction-based methods are the most popular. However, existing methods are either difficult to repair abnormal foregrounds or reconstruct clear backgrounds. Therefore, we propose a clear memory-augmented auto-encoder (CMA-AE). At first, we propose a novel clear memory-augmented module (CMAM), which combines the encoding and memoryencoding in a way of forgetting and inputting, thereby repairing abnormal foregrounds and preserving clear backgrounds. Secondly, a general artificial anomaly generation algorithm (GAAGA) is proposed to simulate anomalies that are as realistic and feature-rich as possible. At last, we propose a novel multi scale feature residual detection method (MSFR) for defect segmentation, which makes the defect location more accurate. Extensive comparison experiments demonstrate that CMA-AE achieves state-of-the-art detection accuracy and shows great potential in industrial applications.


Normal Reference Attention and Defective Feature Perception Network for Surface Defect Detection

arXiv.org Artificial Intelligence

Visual anomaly detection plays a significant role in the development of industrial automatic product quality inspection. As a result of the utmost imbalance in the amount of normal and abnormal data, growing attention has been given to unsupervised methods for defect detection. Although existing reconstruction-based methods have been widely studied recently, establishing a robust reconstruction model for various textured surface defect detection remains a challenging task due to homogeneous and nonregular surface textures. In this paper, we propose a novel unsupervised reconstruction-based method called the normal reference attention and defective feature perception network (NDP-Net) to accurately inspect a variety of textured defects. Unlike most reconstruction-based methods, our NDP-Net first employs an encoding module that extracts multi scale discriminative features of the surface textures, which is augmented with the defect discriminative ability by the proposed artificial defects and the novel pixel-level defect perception loss. Subsequently, a novel reference-based attention module (RBAM) is proposed to leverage the normal features of the fixed reference image to repair the defective features and restrain the reconstruction of the defects. Next, the repaired features are fed into a decoding module to reconstruct the normal textured background. Finally, the novel multi scale defect segmentation module (MSDSM) is introduced for precise defect detection and segmentation. In addition, a two-stage training strategy is utilized to enhance the inspection performance.