Yu, Tinghao
Hunyuan-Large: An Open-Source MoE Model with 52 Billion Activated Parameters by Tencent
Sun, Xingwu, Chen, Yanfeng, Huang, Yiqing, Xie, Ruobing, Zhu, Jiaqi, Zhang, Kai, Li, Shuaipeng, Yang, Zhen, Han, Jonny, Shu, Xiaobo, Bu, Jiahao, Chen, Zhongzhi, Huang, Xuemeng, Lian, Fengzong, Yang, Saiyong, Yan, Jianfeng, Zeng, Yuyuan, Ren, Xiaoqin, Yu, Chao, Wu, Lulu, Mao, Yue, Xia, Jun, Yang, Tao, Zheng, Suncong, Wu, Kan, Jiao, Dian, Xue, Jinbao, Zhang, Xipeng, Wu, Decheng, Liu, Kai, Wu, Dengpeng, Xu, Guanghui, Chen, Shaohua, Chen, Shuang, Feng, Xiao, Hong, Yigeng, Zheng, Junqiang, Xu, Chengcheng, Li, Zongwei, Kuang, Xiong, Hu, Jianglu, Chen, Yiqi, Deng, Yuchi, Li, Guiyang, Liu, Ao, Zhang, Chenchen, Hu, Shihui, Zhao, Zilong, Wu, Zifan, Ding, Yao, Wang, Weichao, Liu, Han, Wang, Roberts, Fei, Hao, Yu, Peijie, Zhao, Ze, Cao, Xun, Wang, Hai, Xiang, Fusheng, Huang, Mengyuan, Xiong, Zhiyuan, Hu, Bin, Hou, Xuebin, Jiang, Lei, Ma, Jianqiang, Wu, Jiajia, Deng, Yaping, Shen, Yi, Wang, Qian, Liu, Weijie, Liu, Jie, Chen, Meng, Dong, Liang, Jia, Weiwen, Chen, Hu, Liu, Feifei, Yuan, Rui, Xu, Huilin, Yan, Zhenxiang, Cao, Tengfei, Hu, Zhichao, Feng, Xinhua, Du, Dong, Yu, Tinghao, Tao, Yangyu, Zhang, Feng, Zhu, Jianchen, Xu, Chengzhong, Li, Xirui, Zha, Chong, Ouyang, Wen, Xia, Yinben, Li, Xiang, He, Zekun, Chen, Rongpeng, Song, Jiawei, Chen, Ruibin, Jiang, Fan, Zhao, Chongqing, Wang, Bo, Gong, Hao, Gan, Rong, Hu, Winston, Kang, Zhanhui, Yang, Yong, Liu, Yuhong, Wang, Di, Jiang, Jie
In this paper, we introduce Hunyuan-Large, which is currently the largest open-source Transformer-based mixture of experts model, with a total of 389 billion parameters and 52 billion activation parameters, capable of handling up to 256K tokens. We conduct a thorough evaluation of Hunyuan-Large's superior performance across various benchmarks including language understanding and generation, logical reasoning, mathematical problem-solving, coding, long-context, and aggregated tasks, where it outperforms LLama3.1-70B and exhibits comparable performance when compared to the significantly larger LLama3.1-405B model. Key practice of Hunyuan-Large include large-scale synthetic data that is orders larger than in previous literature, a mixed expert routing strategy, a key-value cache compression technique, and an expert-specific learning rate strategy. Additionally, we also investigate the scaling laws and learning rate schedule of mixture of experts models, providing valuable insights and guidances for future model development and optimization. The code and checkpoints of Hunyuan-Large are released to facilitate future innovations and applications. Codes: https://github.com/Tencent/Hunyuan-Large Models: https://huggingface.co/tencent/Tencent-Hunyuan-Large
Are LLMs Effective Backbones for Fine-tuning? An Experimental Investigation of Supervised LLMs on Chinese Short Text Matching
Liu, Shulin, Xu, Chengcheng, Liu, Hao, Yu, Tinghao, Yang, Tao
The recent success of Large Language Models (LLMs) has garnered significant attention in both academia and industry. Prior research on LLMs has primarily focused on enhancing or leveraging their generalization capabilities in zero- and few-shot settings. However, there has been limited investigation into effectively fine-tuning LLMs for a specific natural language understanding task in supervised settings. In this study, we conduct an experimental analysis by fine-tuning LLMs for the task of Chinese short text matching. We explore various factors that influence performance when fine-tuning LLMs, including task modeling methods, prompt formats, and output formats.