Yu, Longhui
Kimi k1.5: Scaling Reinforcement Learning with LLMs
Kimi Team, null, Du, Angang, Gao, Bofei, Xing, Bowei, Jiang, Changjiu, Chen, Cheng, Li, Cheng, Xiao, Chenjun, Du, Chenzhuang, Liao, Chonghua, Tang, Chuning, Wang, Congcong, Zhang, Dehao, Yuan, Enming, Lu, Enzhe, Tang, Fengxiang, Sung, Flood, Wei, Guangda, Lai, Guokun, Guo, Haiqing, Zhu, Han, Ding, Hao, Hu, Hao, Yang, Hao, Zhang, Hao, Yao, Haotian, Zhao, Haotian, Lu, Haoyu, Li, Haoze, Yu, Haozhen, Gao, Hongcheng, Zheng, Huabin, Yuan, Huan, Chen, Jia, Guo, Jianhang, Su, Jianlin, Wang, Jianzhou, Zhao, Jie, Zhang, Jin, Liu, Jingyuan, Yan, Junjie, Wu, Junyan, Shi, Lidong, Ye, Ling, Yu, Longhui, Dong, Mengnan, Zhang, Neo, Ma, Ningchen, Pan, Qiwei, Gong, Qucheng, Liu, Shaowei, Ma, Shengling, Wei, Shupeng, Cao, Sihan, Huang, Siying, Jiang, Tao, Gao, Weihao, Xiong, Weimin, He, Weiran, Huang, Weixiao, Wu, Wenhao, He, Wenyang, Wei, Xianghui, Jia, Xianqing, Wu, Xingzhe, Xu, Xinran, Zu, Xinxing, Zhou, Xinyu, Pan, Xuehai, Charles, Y., Li, Yang, Hu, Yangyang, Liu, Yangyang, Chen, Yanru, Wang, Yejie, Liu, Yibo, Qin, Yidao, Liu, Yifeng, Yang, Ying, Bao, Yiping, Du, Yulun, Wu, Yuxin, Wang, Yuzhi, Zhou, Zaida, Wang, Zhaoji, Li, Zhaowei, Zhu, Zhen, Zhang, Zheng, Wang, Zhexu, Yang, Zhilin, Huang, Zhiqi, Huang, Zihao, Xu, Ziyao, Yang, Zonghan
Language model pretraining with next token prediction has proved effective for scaling compute but is limited to the amount of available training data. Scaling reinforcement learning (RL) unlocks a new axis for the continued improvement of artificial intelligence, with the promise that large language models (LLMs) can scale their training data by learning to explore with rewards. However, prior published work has not produced competitive results. In light of this, we report on the training practice of Kimi k1.5, our latest multi-modal LLM trained with RL, including its RL training techniques, multi-modal data recipes, and infrastructure optimization. Long context scaling and improved policy optimization methods are key ingredients of our approach, which establishes a simplistic, effective RL framework without relying on more complex techniques such as Monte Carlo tree search, value functions, and process reward models. Notably, our system achieves state-of-the-art reasoning performance across multiple benchmarks and modalities -- e.g., 77.5 on AIME, 96.2 on MATH 500, 94-th percentile on Codeforces, 74.9 on MathVista -- matching OpenAI's o1. Moreover, we present effective long2short methods that use long-CoT techniques to improve short-CoT models, yielding state-of-the-art short-CoT reasoning results -- e.g., 60.8 on AIME, 94.6 on MATH500, 47.3 on LiveCodeBench -- outperforming existing short-CoT models such as GPT-4o and Claude Sonnet 3.5 by a large margin (up to +550%).
$\texttt{PatentAgent}$: Intelligent Agent for Automated Pharmaceutical Patent Analysis
Wang, Xin, Zhang, Yifan, Zhang, Xiaojing, Yu, Longhui, Lin, Xinna, Jiang, Jindong, Ma, Bin, Yu, Kaicheng
Pharmaceutical patents play a vital role in biochemical industries, especially in drug discovery, providing researchers with unique early access to data, experimental results, and research insights. With the advancement of machine learning, patent analysis has evolved from manual labor to tasks assisted by automatic tools. However, there still lacks an unified agent that assists every aspect of patent analysis, from patent reading to core chemical identification. Leveraging the capabilities of Large Language Models (LLMs) to understand requests and follow instructions, we introduce the $\textbf{first}$ intelligent agent in this domain, $\texttt{PatentAgent}$, poised to advance and potentially revolutionize the landscape of pharmaceutical research. $\texttt{PatentAgent}$ comprises three key end-to-end modules -- $\textit{PA-QA}$, $\textit{PA-Img2Mol}$, and $\textit{PA-CoreId}$ -- that respectively perform (1) patent question-answering, (2) image-to-molecular-structure conversion, and (3) core chemical structure identification, addressing the essential needs of scientists and practitioners in pharmaceutical patent analysis. Each module of $\texttt{PatentAgent}$ demonstrates significant effectiveness with the updated algorithm and the synergistic design of $\texttt{PatentAgent}$ framework. $\textit{PA-Img2Mol}$ outperforms existing methods across CLEF, JPO, UOB, and USPTO patent benchmarks with an accuracy gain between 2.46% and 8.37% while $\textit{PA-CoreId}$ realizes accuracy improvement ranging from 7.15% to 7.62% on PatentNetML benchmark. Our code and dataset will be publicly available.
Easy-to-Hard Generalization: Scalable Alignment Beyond Human Supervision
Sun, Zhiqing, Yu, Longhui, Shen, Yikang, Liu, Weiyang, Yang, Yiming, Welleck, Sean, Gan, Chuang
Current AI alignment methodologies rely on human-provided demonstrations or judgments, and the learned capabilities of AI systems would be upper-bounded by human capabilities as a result. This raises a challenging research question: How can we keep improving the systems when their capabilities have surpassed the levels of humans? This paper answers this question in the context of tackling hard reasoning tasks (e.g., level 4-5 MATH problems) via learning from human annotations on easier tasks (e.g., level 1-3 MATH problems), which we term as \textit{easy-to-hard generalization}. Our key insight is that an evaluator (reward model) trained on supervisions for easier tasks can be effectively used for scoring candidate solutions of harder tasks and hence facilitating easy-to-hard generalization over different levels of tasks. Based on this insight, we propose a novel approach to scalable alignment, which firstly trains the process-supervised reward models on easy problems (e.g., level 1-3), and then uses them to evaluate the performance of policy models on hard problems. We show that such \textit{easy-to-hard generalization from evaluators} can enable \textit{easy-to-hard generalizations in generators} either through re-ranking or reinforcement learning (RL). Notably, our process-supervised 7b RL model achieves an accuracy of 34.0\% on MATH500, despite only using human supervision on easy problems. Our approach suggests a promising path toward AI systems that advance beyond the frontier of human supervision.
Parameter-Efficient Orthogonal Finetuning via Butterfly Factorization
Liu, Weiyang, Qiu, Zeju, Feng, Yao, Xiu, Yuliang, Xue, Yuxuan, Yu, Longhui, Feng, Haiwen, Liu, Zhen, Heo, Juyeon, Peng, Songyou, Wen, Yandong, Black, Michael J., Weller, Adrian, Schรถlkopf, Bernhard
Large foundation models are becoming ubiquitous, but training them from scratch is prohibitively expensive. Thus, efficiently adapting these powerful models to downstream tasks is increasingly important. In this paper, we study a principled finetuning paradigm -- Orthogonal Finetuning (OFT) -- for downstream task adaptation. Despite demonstrating good generalizability, OFT still uses a fairly large number of trainable parameters due to the high dimensionality of orthogonal matrices. To address this, we start by examining OFT from an information transmission perspective, and then identify a few key desiderata that enable better parameter-efficiency. Inspired by how the Cooley-Tukey fast Fourier transform algorithm enables efficient information transmission, we propose an efficient orthogonal parameterization using butterfly structures. We apply this parameterization to OFT, creating a novel parameter-efficient finetuning method, called Orthogonal Butterfly (BOFT). By subsuming OFT as a special case, BOFT introduces a generalized orthogonal finetuning framework. Finally, we conduct an extensive empirical study of adapting large vision transformers, large language models, and text-to-image diffusion models to various downstream tasks in vision and language.
MetaMath: Bootstrap Your Own Mathematical Questions for Large Language Models
Yu, Longhui, Jiang, Weisen, Shi, Han, Yu, Jincheng, Liu, Zhengying, Zhang, Yu, Kwok, James T., Li, Zhenguo, Weller, Adrian, Liu, Weiyang
Large language models (LLMs) have pushed the limits of natural language understanding and exhibited excellent problem-solving ability. Despite the great success, most existing open-source LLMs (e.g., LLaMA-2) are still far away from satisfactory for solving mathematical problems due to the complex reasoning procedures. To bridge this gap, we propose MetaMath, a finetuned language model that specializes in mathematical reasoning. Specifically, we start by bootstrapping mathematical questions by rewriting the question from multiple perspectives, which results in a new dataset called MetaMathQA. Experimental results on two popular benchmarks (i.e., GSM8K and MATH) for mathematical reasoning demonstrate that MetaMath outperforms a suite of open-source LLMs by a significant margin. Our MetaMath-7B model achieves 66.5% on GSM8K and 19.8% on MATH, exceeding the state-ofthe-art models of the same size by 11.5% and 8.7%. Particularly, MetaMath-70B achieves an accuracy of 82.3% on GSM8K, slightly better than GPT-3.5-Turbo. We release all the MetaMathQA dataset, the MetaMath models with different model sizes and the training code for public use. What is the total amount that James paid when he purchased 5 packs of beef, each weighing 4 pounds, at a price of $5.50 per pound? James buys x packs of beef that are 4 packs of beef that are 4 pounds each. The price of beef is $5.50 per pound. What is The price of beef is $5.50 per pound. James buys x packs of beef that are 4 pounds each.
Forward-Backward Reasoning in Large Language Models for Mathematical Verification
Jiang, Weisen, Shi, Han, Yu, Longhui, Liu, Zhengying, Zhang, Yu, Li, Zhenguo, Kwok, James T.
Chain-of-Thought (CoT) prompting in large language models (LLMs) has shown promising performance on mathematical reasoning tasks. Recently, Self-Consistency samples a diverse set of reasoning chains with different answers and chooses the answer by majority voting. Though effective, its performance cannot be further improved by sampling more reasoning chains. To address this problem, we propose to integrate backward reasoning into answer verification. We first mask a number in the question by ${\bf x}$. The LLM is then asked to predict the masked number with a candidate answer $A$ embedded in the template: ``If we know the answer to the above question is $\{A\}$, what is the value of unknown variable ${\bf x}$?'' The LLM is expected to predict the masked number successfully if the provided candidate answer is correct. To further improve performance, we propose FOBAR (FOrward-BAckward Reasoning) to combine forward and backward reasoning for verifying candidate answers. Experiments are performed on six standard mathematical data sets and three LLMs (text-davinci-003, GPT-3.5-Turbo, GPT-4). Results show that FOBAR achieves state-of-the-art performance. In particular, FOBAR outperforms Self-Consistency which uses forward reasoning alone, demonstrating that combining forward and forward reasoning is better. It also outperforms existing verification methods, verifying the effectiveness of using the simple template in backward reasoning and the proposed combination.
Generalizing and Decoupling Neural Collapse via Hyperspherical Uniformity Gap
Liu, Weiyang, Yu, Longhui, Weller, Adrian, Schรถlkopf, Bernhard
The neural collapse (NC) phenomenon describes an underlying geometric symmetry for deep neural networks, where both deeply learned features and classifiers converge to a simplex equiangular tight frame. It has been shown that both cross-entropy loss and mean square error can provably lead to NC. We remove NC's key assumption on the feature dimension and the number of classes, and then present a generalized neural collapse (GNC) hypothesis that effectively subsumes the original NC. Inspired by how NC characterizes the training target of neural networks, we decouple GNC into two objectives: minimal intra-class variability and maximal inter-class separability. We then use hyperspherical uniformity (which characterizes the degree of uniformity on the unit hypersphere) as a unified framework to quantify these two objectives. Finally, we propose a general objective -- hyperspherical uniformity gap (HUG), which is defined by the difference between inter-class and intra-class hyperspherical uniformity. HUG not only provably converges to GNC, but also decouples GNC into two separate objectives. Unlike cross-entropy loss that couples intra-class compactness and inter-class separability, HUG enjoys more flexibility and serves as a good alternative loss function. Empirical results show that HUG works well in terms of generalization and robustness.
Continual Learning by Modeling Intra-Class Variation
Yu, Longhui, Hu, Tianyang, Hong, Lanqing, Liu, Zhen, Weller, Adrian, Liu, Weiyang
It has been observed that neural networks perform poorly when the data or tasks are presented sequentially. Unlike humans, neural networks suffer greatly from catastrophic forgetting, making it impossible to perform life-long learning. To address this issue, memory-based continual learning has been actively studied and stands out as one of the best-performing methods. We examine memory-based continual learning and identify that large variation in the representation space is crucial for avoiding catastrophic forgetting. Motivated by this, we propose to diversify representations by using two types of perturbations: model-agnostic variation (i.e., the variation is generated without the knowledge of the learned neural network) and model-based variation (i.e., the variation is conditioned on the learned neural network). We demonstrate that enlarging representational variation serves as a general principle to improve continual learning. Finally, we perform empirical studies which demonstrate that our method, as a simple plug-and-play component, can consistently improve a number of memory-based continual learning methods by a large margin.