Goto

Collaborating Authors

 Yu, Le


Qwen2.5-1M Technical Report

arXiv.org Artificial Intelligence

We introduce Qwen2.5-1M, a series of models that extend the context length to 1 million tokens. Compared to the previous 128K version, the Qwen2.5-1M series have significantly enhanced long-context capabilities through long-context pre-training and post-training. Key techniques such as long data synthesis, progressive pre-training, and multi-stage supervised fine-tuning are employed to effectively enhance long-context performance while reducing training costs. To promote the use of long-context models among a broader user base, we present and open-source our inference framework. This framework includes a length extrapolation method that can expand the model context lengths by at least four times, or even more, without additional training. To reduce inference costs, we implement a sparse attention method along with chunked prefill optimization for deployment scenarios and a sparsity refinement method to improve precision. Additionally, we detail our optimizations in the inference engine, including kernel optimization, pipeline parallelism, and scheduling optimization, which significantly enhance overall inference performance. By leveraging our inference framework, the Qwen2.5-1M models achieve a remarkable 3x to 7x prefill speedup in scenarios with 1 million tokens of context. This framework provides an efficient and powerful solution for developing applications that require long-context processing using open-source models. The Qwen2.5-1M series currently includes the open-source models Qwen2.5-7B-Instruct-1M and Qwen2.5-14B-Instruct-1M, as well as the API-accessed model Qwen2.5-Turbo. Evaluations show that Qwen2.5-1M models have been greatly improved in long-context tasks without compromising performance in short-context scenarios. Specifically, the Qwen2.5-14B-Instruct-1M model significantly outperforms GPT-4o-mini in long-context tasks and supports contexts eight times longer.


Revolutionizing Encrypted Traffic Classification with MH-Net: A Multi-View Heterogeneous Graph Model

arXiv.org Artificial Intelligence

With the growing significance of network security, the classification of encrypted traffic has emerged as an urgent challenge. Traditional byte-based traffic analysis methods are constrained by the rigid granularity of information and fail to fully exploit the diverse correlations between bytes. To address these limitations, this paper introduces MH-Net, a novel approach for classifying network traffic that leverages multi-view heterogeneous traffic graphs to model the intricate relationships between traffic bytes. The essence of MH-Net lies in aggregating varying numbers of traffic bits into multiple types of traffic units, thereby constructing multi-view traffic graphs with diverse information granularities. By accounting for different types of byte correlations, such as header-payload relationships, MH-Net further endows the traffic graph with heterogeneity, significantly enhancing model performance. Notably, we employ contrastive learning in a multi-task manner to strengthen the robustness of the learned traffic unit representations. Experiments conducted on the ISCX and CIC-IoT datasets for both the packet-level and flow-level traffic classification tasks demonstrate that MH-Net achieves the best overall performance compared to dozens of SOTA methods.


Qwen2.5 Technical Report

arXiv.org Artificial Intelligence

In this report, we introduce Qwen2.5, a comprehensive series of large language models (LLMs) designed to meet diverse needs. Compared to previous iterations, Qwen 2.5 has been significantly improved during both the pre-training and post-training stages. In terms of pre-training, we have scaled the high-quality pre-training datasets from the previous 7 trillion tokens to 18 trillion tokens. This provides a strong foundation for common sense, expert knowledge, and reasoning capabilities. In terms of post-training, we implement intricate supervised finetuning with over 1 million samples, as well as multistage reinforcement learning. Post-training techniques enhance human preference, and notably improve long text generation, structural data analysis, and instruction following. To handle diverse and varied use cases effectively, we present Qwen2.5 LLM series in rich sizes. Open-weight offerings include base and instruction-tuned models, with quantized versions available. In addition, for hosted solutions, the proprietary models currently include two mixture-of-experts (MoE) variants: Qwen2.5-Turbo and Qwen2.5-Plus, both available from Alibaba Cloud Model Studio. Qwen2.5 has demonstrated top-tier performance on a wide range of benchmarks evaluating language understanding, reasoning, mathematics, coding, human preference alignment, etc. Specifically, the open-weight flagship Qwen2.5-72B-Instruct outperforms a number of open and proprietary models and demonstrates competitive performance to the state-of-the-art open-weight model, Llama-3-405B-Instruct, which is around 5 times larger. Qwen2.5-Turbo and Qwen2.5-Plus offer superior cost-effectiveness while performing competitively against GPT-4o-mini and GPT-4o respectively. Additionally, as the foundation, Qwen2.5 models have been instrumental in training specialized models such as Qwen2.5-Math, Qwen2.5-Coder, QwQ, and multimodal models.


A Unified View of Delta Parameter Editing in Post-Trained Large-Scale Models

arXiv.org Artificial Intelligence

Post-training has emerged as a crucial paradigm for adapting large-scale pretrained models to various tasks, whose effects are fully reflected by delta parameters (i.e., the disparity between post-trained and pre-trained parameters). While numerous studies have explored delta parameter properties via operations like pruning, quantization, low-rank approximation, and extrapolation, a unified framework for systematically examining these characteristics has been lacking. In this paper, we propose a novel perspective based on Riemann sum approximation of the loss function to elucidate delta parameter editing operations. Our analysis categorizes existing methods into three classes based on their post-editing performance: competitive, decreased, and improved, explaining how they are expressed by the Riemann sum approximation term and how they alter the model performance. Extensive experiments on both visual and language models, including ViT, LLaMA 3, Qwen 2, and Mistral, corroborate our theoretical findings. Furthermore, we introduce extensions to existing techniques like DARE and BitDelta, highlighting their limitations in leveraging the properties of delta parameters and reorganizing them into general expressions to enhance the applicability and effectiveness of delta parameter editing in post-trained models. With the remarkable success of large-scale pre-trained models, post-training has emerged as the de facto standard paradigm for effective adaptations to various tasks (Han et al., 2024; Xin et al., 2024; Dodge et al., 2020; Zhao et al., 2023).


One Train for Two Tasks: An Encrypted Traffic Classification Framework Using Supervised Contrastive Learning

arXiv.org Artificial Intelligence

As network security receives widespread attention, encrypted traffic classification has become the current research focus. However, existing methods conduct traffic classification without sufficiently considering the common characteristics between data samples, leading to suboptimal performance. Moreover, they train the packet-level and flow-level classification tasks independently, which is redundant because the packet representations learned in the packet-level task can be exploited by the flow-level task. Therefore, in this paper, we propose an effective model named a Contrastive Learning Enhanced Temporal Fusion Encoder (CLE-TFE). In particular, we utilize supervised contrastive learning to enhance the packet-level and flow-level representations and perform graph data augmentation on the byte-level traffic graph so that the fine-grained semantic-invariant characteristics between bytes can be captured through contrastive learning. We also propose cross-level multi-task learning, which simultaneously accomplishes the packet-level and flow-level classification tasks in the same model with one training. Further experiments show that CLE-TFE achieves the best overall performance on the two tasks, while its computational overhead (i.e., floating point operations, FLOPs) is only about 1/14 of the pre-trained model (e.g., ET-BERT). We release the code at https://github.com/ViktorAxelsen/CLE-TFE


Language Models are Super Mario: Absorbing Abilities from Homologous Models as a Free Lunch

arXiv.org Artificial Intelligence

In this paper, we unveil that Language Models (LMs) can acquire new capabilities by assimilating parameters from homologous models without retraining or GPUs. We first introduce DARE to set most delta parameters (i.e., the disparity between fine-tuned and pre-trained parameters) to zeros without affecting the abilities of Supervised Fine-Tuning (SFT) LMs, which randomly Drops delta parameters with a ratio p And REscales the remaining ones by 1/(1 - p) to approximate the original embeddings. Then, we use DARE as a versatile plug-and-play technique to sparsify delta parameters of multiple SFT homologous models for mitigating parameter interference and merge them into a single model by parameter fusing. We experiment with encoder- and decoder-based LMs, showing that: (1) SFT delta parameter value ranges are typically small (within 0.005) with extreme redundancy, and DARE can effortlessly eliminate 90% or even 99% of them. (2) DARE can merge multiple task-specific LMs into one LM with diverse capabilities. For instance, the amalgamation of WizardLM and WizardMath significantly enhances the GSM8K zero-shot accuracy of WizardLM from 2.2 to 66.3, retaining the instruction-following proficiency while surpassing WizardMath's 64.2 performance. Our merged LM also ranks first among models with 7 billion parameters on the Open LLM Leaderboard.


Pretraining Language Models with Text-Attributed Heterogeneous Graphs

arXiv.org Artificial Intelligence

In many real-world scenarios (e.g., academic networks, social platforms), different types of entities are not only associated with texts but also connected by various relationships, which can be abstracted as Text-Attributed Heterogeneous Graphs (TAHGs). Current pretraining tasks for Language Models (LMs) primarily focus on separately learning the textual information of each entity and overlook the crucial aspect of capturing topological connections among entities in TAHGs. In this paper, we present a new pretraining framework for LMs that explicitly considers the topological and heterogeneous information in TAHGs. Firstly, we define a context graph as neighborhoods of a target node within specific orders and propose a topology-aware pretraining task to predict nodes involved in the context graph by jointly optimizing an LM and an auxiliary heterogeneous graph neural network. Secondly, based on the observation that some nodes are text-rich while others have little text, we devise a text augmentation strategy to enrich textless nodes with their neighbors' texts for handling the imbalance issue. We conduct link prediction and node classification tasks on three datasets from various domains. Experimental results demonstrate the superiority of our approach over existing methods and the rationality of each design. Our code is available at https://github.com/Hope-Rita/THLM.


Towards Better Dynamic Graph Learning: New Architecture and Unified Library

arXiv.org Artificial Intelligence

We propose DyGFormer, a new Transformer-based architecture for dynamic graph learning. DyGFormer is conceptually simple and only needs to learn from nodes' historical first-hop interactions by: (1) a neighbor co-occurrence encoding scheme that explores the correlations of the source node and destination node based on their historical sequences; (2) a patching technique that divides each sequence into multiple patches and feeds them to Transformer, allowing the model to effectively and efficiently benefit from longer histories. We also introduce DyGLib, a unified library with standard training pipelines, extensible coding interfaces, and comprehensive evaluating protocols to promote reproducible, scalable, and credible dynamic graph learning research. By performing exhaustive experiments on thirteen datasets for dynamic link prediction and dynamic node classification tasks, we find that DyGFormer achieves state-of-the-art performance on most of the datasets, demonstrating its effectiveness in capturing nodes' correlations and long-term temporal dependencies. Moreover, some results of baselines are inconsistent with previous reports, which may be caused by their diverse but less rigorous implementations, showing the importance of DyGLib. All the used resources are publicly available at https://github.com/yule-BUAA/DyGLib.


An Empirical Evaluation of Temporal Graph Benchmark

arXiv.org Artificial Intelligence

In this paper, we conduct an empirical evaluation of Temporal Graph Benchmark (TGB) by extending our Dynamic Graph Library (DyGLib) to TGB. Compared with TGB, we include eleven popular dynamic graph learning methods for more exhaustive comparisons. Through the experiments, we find that (1) different models depict varying performance across various datasets, which is in line with previous observations; (2) the performance of some baselines can be significantly improved over the reported results in TGB when using DyGLib. This work aims to ease the researchers' efforts in evaluating various dynamic graph learning methods on TGB and attempts to offer results that can be directly referenced in the follow-up research. All the used resources in this project are publicly available at https://github.com/yule-BUAA/DyGLib_TGB. This work is in progress, and feedback from the community is welcomed for improvements.


Event-based Dynamic Graph Representation Learning for Patent Application Trend Prediction

arXiv.org Artificial Intelligence

Accurate prediction of what types of patents that companies will apply for in the next period of time can figure out their development strategies and help them discover potential partners or competitors in advance. Although important, this problem has been rarely studied in previous research due to the challenges in modelling companies' continuously evolving preferences and capturing the semantic correlations of classification codes. To fill in this gap, we propose an event-based dynamic graph learning framework for patent application trend prediction. In particular, our method is founded on the memorable representations of both companies and patent classification codes. When a new patent is observed, the representations of the related companies and classification codes are updated according to the historical memories and the currently encoded messages. Moreover, a hierarchical message passing mechanism is provided to capture the semantic proximities of patent classification codes by updating their representations along the hierarchical taxonomy. Finally, the patent application trend is predicted by aggregating the representations of the target company and classification codes from static, dynamic, and hierarchical perspectives. Experiments on real-world data demonstrate the effectiveness of our approach under various experimental conditions, and also reveal the abilities of our method in learning semantics of classification codes and tracking technology developing trajectories of companies.