Yu, Kun-Hsing
Safety challenges of AI in medicine
Wang, Xiaoye, Zhang, Nicole Xi, He, Hongyu, Nguyen, Trang, Yu, Kun-Hsing, Deng, Hao, Brandt, Cynthia, Bitterman, Danielle S., Pan, Ling, Cheng, Ching-Yu, Zou, James, Liu, Dianbo
Recent advancements in artificial intelligence (AI), particularly in deep learning and large language models (LLMs), have accelerated their integration into medicine. However, these developments have also raised public concerns about the safe application of AI. In healthcare, these concerns are especially pertinent, as the ethical and secure deployment of AI is crucial for protecting patient health and privacy. This review examines potential risks in AI practices that may compromise safety in medicine, including reduced performance across diverse populations, inconsistent operational stability, the need for high-quality data for effective model tuning, and the risk of data breaches during model development and deployment. For medical practitioners, patients, and researchers, LLMs provide a convenient way to interact with AI and data through language. However, their emergence has also amplified safety concerns, particularly due to issues like hallucination. Second part of this article explores safety issues specific to LLMs in medical contexts, including limitations in processing complex logic, challenges in aligning AI objectives with human values, the illusion of understanding, and concerns about diversity. Thoughtful development of safe AI could accelerate its adoption in real-world medical settings.
Construction of extra-large scale screening tools for risks of severe mental illnesses using real world healthcare data
Liu, Dianbo, Choi, Karmel W., Lizano, Paulo, Yuan, William, Yu, Kun-Hsing, Smoller, Jordan W., Kohane, Isaac
Importance: The prevalence of severe mental illnesses (SMIs) in the United States is approximately 3% of the whole population. The ability to conduct risk screening of SMIs at large scale could inform early prevention and treatment. Objective: A scalable machine learning based tool was developed to conduct population-level risk screening for SMIs, including schizophrenia, schizoaffective disorders, psychosis, and bipolar disorders,using 1) healthcare insurance claims and 2) electronic health records (EHRs). Design, setting and participants: Data from beneficiaries from a nationwide commercial healthcare insurer with 77.4 million members and data from patients from EHRs from eight academic hospitals based in the U.S. were used. First, the predictive models were constructed and tested using data in case-control cohorts from insurance claims or EHR data. Second, performance of the predictive models across data sources were analyzed. Third, as an illustrative application, the models were further trained to predict risks of SMIs among 18-year old young adults and individuals with substance associated conditions. Main outcomes and measures: Machine learning-based predictive models for SMIs in the general population were built based on insurance claims and EHR.