Goto

Collaborating Authors

 Yu, Jiangyue


Deep Image Style Transfer from Freeform Text

arXiv.org Artificial Intelligence

This paper creates a novel method of deep neural style transfer by generating style images from freeform user text input. The language model and style transfer model form a seamless pipeline that can create output images with similar losses and improved quality when compared to baseline style transfer methods. The language model returns a closely matching image given a style text and description input, which is then passed to the style transfer model with an input content image to create a final output. A proof-of-concept tool is also developed to integrate the models and demonstrate the effectiveness of deep image style transfer from freeform text.


Motif Mining and Unsupervised Representation Learning for BirdCLEF 2022

arXiv.org Artificial Intelligence

We build a classification model for the BirdCLEF 2022 challenge using unsupervised methods. We implement an unsupervised representation of the training dataset using a triplet loss on spectrogram representation of audio motifs. Our best model performs with a score of 0.48 on the public leaderboard.