Yu, Jiaming
Heterogeneous Multi-Agent Reinforcement Learning for Distributed Channel Access in WLANs
Yu, Jiaming, Liang, Le, Guo, Chongtao, Guo, Ziyang, Jin, Shi, Li, Geoffrey Ye
This paper investigates the use of multi-agent reinforcement learning (MARL) to address distributed channel access in wireless local area networks. In particular, we consider the challenging yet more practical case where the agents heterogeneously adopt value-based or policy-based reinforcement learning algorithms to train the model. We propose a heterogeneous MARL training framework, named QPMIX, which adopts a centralized training with distributed execution paradigm to enable heterogeneous agents to collaborate. Moreover, we theoretically prove the convergence of the proposed heterogeneous MARL method when using the linear value function approximation. Our method maximizes the network throughput and ensures fairness among stations, therefore, enhancing the overall network performance. Simulation results demonstrate that the proposed QPMIX algorithm improves throughput, mean delay, delay jitter, and collision rates compared with conventional carrier-sense multiple access with collision avoidance in the saturated traffic scenario. Furthermore, the QPMIX is shown to be robust in unsaturated and delay-sensitive traffic scenarios, and promotes cooperation among heterogeneous agents.
Potential and Limitations of LLMs in Capturing Structured Semantics: A Case Study on SRL
Cheng, Ning, Yan, Zhaohui, Wang, Ziming, Li, Zhijie, Yu, Jiaming, Zheng, Zilong, Tu, Kewei, Xu, Jinan, Han, Wenjuan
Large Language Models (LLMs) play a crucial role in capturing structured semantics to enhance language understanding, improve interpretability, and reduce bias. Nevertheless, an ongoing controversy exists over the extent to which LLMs can grasp structured semantics. To assess this, we propose using Semantic Role Labeling (SRL) as a fundamental task to explore LLMs' ability to extract structured semantics. In our assessment, we employ the prompting approach, which leads to the creation of our few-shot SRL parser, called PromptSRL. PromptSRL enables LLMs to map natural languages to explicit semantic structures, which provides an interpretable window into the properties of LLMs. We find interesting potential: LLMs can indeed capture semantic structures, and scaling-up doesn't always mirror potential. Additionally, limitations of LLMs are observed in C-arguments, etc. Lastly, we are surprised to discover that significant overlap in the errors is made by both LLMs and untrained humans, accounting for almost 30% of all errors.
CausalCellSegmenter: Causal Inference inspired Diversified Aggregation Convolution for Pathology Image Segmentation
Fan, Dawei, Gao, Yifan, Yu, Jiaming, Chen, Yanping, Li, Wencheng, Lin, Chuancong, Li, Kaibin, Yang, Changcai, Chen, Riqing, Wei, Lifang
Deep learning models have shown promising performance for cell nucleus segmentation in the field of pathology image analysis. However, training a robust model from multiple domains remains a great challenge for cell nucleus segmentation. Additionally, the shortcomings of background noise, highly overlapping between cell nucleus, and blurred edges often lead to poor performance. To address these challenges, we propose a novel framework termed CausalCellSegmenter, which combines Causal Inference Module (CIM) with Diversified Aggregation Convolution (DAC) techniques. The DAC module is designed which incorporates diverse downsampling features through a simple, parameter-free attention module (SimAM), aiming to overcome the problems of false-positive identification and edge blurring. Furthermore, we introduce CIM to leverage sample weighting by directly removing the spurious correlations between features for every input sample and concentrating more on the correlation between features and labels. Extensive experiments on the MoNuSeg-2018 dataset achieves promising results, outperforming other state-of-the-art methods, where the mIoU and DSC scores growing by 3.6% and 2.65%.
OpenNDD: Open Set Recognition for Neurodevelopmental Disorders Detection
Yu, Jiaming, Guan, Zihao, Chang, Xinyue, Liu, Shujie, Shi, Zhenshan, Liu, Xiumei, Yang, Changcai, Chen, Riqing, Xue, Lanyan, Wei, Lifang
Since the strong comorbid similarity in NDDs, such as attention-deficit hyperactivity disorder, can interfere with the accurate diagnosis of autism spectrum disorder (ASD), identifying unknown classes is extremely crucial and challenging from NDDs. We design a novel open set recognition framework for ASD-aided diagnosis (OpenNDD), which trains a model by combining autoencoder and adversarial reciprocal points learning to distinguish in-distribution and out-of-distribution categories as well as identify ASD accurately. Considering the strong similarities between NDDs, we present a joint scaling method by Min-Max scaling combined with Standardization (MMS) to increase the differences between classes for better distinguishing unknown NDDs. We conduct the experiments in the hybrid datasets from Autism Brain Imaging Data Exchange I (ABIDE I) and THE ADHD-200 SAMPLE (ADHD-200) with 791 samples from four sites and the results demonstrate the superiority on various metrics. Our OpenNDD achieves promising performance, where the accuracy is 77.38%, AUROC is 75.53% and the open set classification rate is as high as 59.43%.