Yu, Hui
Live and Learn: Continual Action Clustering with Incremental Views
Yan, Xiaoqiang, Gan, Yingtao, Mao, Yiqiao, Ye, Yangdong, Yu, Hui
Multi-view action clustering leverages the complementary information from different camera views to enhance the clustering performance. Although existing approaches have achieved significant progress, they assume all camera views are available in advance, which is impractical when the camera view is incremental over time. Besides, learning the invariant information among multiple camera views is still a challenging issue, especially in continual learning scenario. Aiming at these problems, we propose a novel continual action clustering (CAC) method, which is capable of learning action categories in a continual learning manner. To be specific, we first devise a category memory library, which captures and stores the learned categories from historical views. Then, as a new camera view arrives, we only need to maintain a consensus partition matrix, which can be updated by leveraging the incoming new camera view rather than keeping all of them. Finally, a three-step alternate optimization is proposed, in which the category memory library and consensus partition matrix are optimized. The empirical experimental results on 6 realistic multi-view action collections demonstrate the excellent clustering performance and time/space efficiency of the CAC compared with 15 state-of-the-art baselines.
Attention-Guided Erasing: A Novel Augmentation Method for Enhancing Downstream Breast Density Classification
Panambur, Adarsh Bhandary, Yu, Hui, Bhat, Sheethal, Madhu, Prathmesh, Bayer, Siming, Maier, Andreas
The assessment of breast density is crucial in the context of breast cancer screening, especially in populations with a higher percentage of dense breast tissues. This study introduces a novel data augmentation technique termed Attention-Guided Erasing (AGE), devised to enhance the downstream classification of four distinct breast density categories in mammography following the BI-RADS recommendation in the Vietnamese cohort. The proposed method integrates supplementary information during transfer learning, utilizing visual attention maps derived from a vision transformer backbone trained using the self-supervised DINO method. These maps are utilized to erase background regions in the mammogram images, unveiling only the potential areas of dense breast tissues to the network. Through the incorporation of AGE during transfer learning with varying random probabilities, we consistently surpass classification performance compared to scenarios without AGE and the traditional random erasing transformation. We validate our methodology using the publicly available VinDr-Mammo dataset. Specifically, we attain a mean F1-score of 0.5910, outperforming values of 0.5594 and 0.5691 corresponding to scenarios without AGE and with random erasing (RE), respectively. This superiority is further substantiated by t-tests, revealing a p-value of p<0.0001, underscoring the statistical significance of our approach.
Privacy-Preserving Encrypted Low-Dose CT Denoising
Yang, Ziyuan, Huangfu, Huijie, Ran, Maosong, Wang, Zhiwen, Yu, Hui, Zhang, Yi
Deep learning (DL) has made significant advancements in tomographic imaging, particularly in low-dose computed tomography (LDCT) denoising. A recent trend involves servers training powerful models with large amounts of self-collected private data and providing application programming interfaces (APIs) for users, such as Chat-GPT. To avoid model leakage, users are required to upload their data to the server model, but this way raises public concerns about the potential risk of privacy disclosure, especially for medical data. Hence, to alleviate related concerns, in this paper, we propose to directly denoise LDCT in the encrypted domain to achieve privacy-preserving cloud services without exposing private data to the server. To this end, we employ homomorphic encryption to encrypt private LDCT data, which is then transferred to the server model trained with plaintext LDCT for further denoising. However, since traditional operations, such as convolution and linear transformation, in DL methods cannot be directly used in the encrypted domain, we transform the fundamental mathematic operations in the plaintext domain into the operations in the encrypted domain. In addition, we present two interactive frameworks for linear and nonlinear models in this paper, both of which can achieve lossless operating. In this way, the proposed methods can achieve two merits, the data privacy is well protected and the server model is free from the risk of model leakage. Moreover, we provide theoretical proof to validate the lossless property of our framework. Finally, experiments were conducted to demonstrate that the transferred contents are well protected and cannot be reconstructed. The code will be released once the paper is accepted.
Curvature-based Transformer for Molecular Property Prediction
Chen, Yili, Li, Zhengyu, Wan, Zheng, Yu, Hui, Wei, Xian
The prediction of molecular properties is one of the most important and challenging tasks in the field of artificial intelligence-based drug design. Among the current mainstream methods, the most commonly used feature representation for training DNN models is based on SMILES and molecular graphs, although these methods are concise and effective, they also limit the ability to capture spatial information. In this work, we propose Curvature-based Transformer to improve the ability of Graph Transformer neural network models to extract structural information on molecular graph data by introducing Discretization of Ricci Curvature. To embed the curvature in the model, we add the curvature information of the graph as positional Encoding to the node features during the attention-score calculation. This method can introduce curvature information from graph data without changing the original network architecture, and it has the potential to be extended to other models. We performed experiments on chemical molecular datasets including PCQM4M-LST, MoleculeNet and compared with models such as Uni-Mol, Graphormer, and the results show that this method can achieve the state-of-the-art results. It is proved that the discretized Ricci curvature also reflects the structural and functional relationship while describing the local geometry of the graph molecular data.
A Deep Learning Method for Real-time Bias Correction of Wind Field Forecasts in the Western North Pacific
Zhang, Wei, Jiang, Yueyue, Dong, Junyu, Song, Xiaojiang, Pang, Renbo, Guoan, Boyu, Yu, Hui
Forecasts by the European Centre for Medium-Range Weather Forecasts (ECMWF; EC for short) can provide a basis for the establishment of maritime-disaster warning systems, but they contain some systematic biases.The fifth-generation EC atmospheric reanalysis (ERA5) data have high accuracy, but are delayed by about 5 days. To overcome this issue, a spatiotemporal deep-learning method could be used for nonlinear mapping between EC and ERA5 data, which would improve the quality of EC wind forecast data in real time. In this study, we developed the Multi-Task-Double Encoder Trajectory Gated Recurrent Unit (MT-DETrajGRU) model, which uses an improved double-encoder forecaster architecture to model the spatiotemporal sequence of the U and V components of the wind field; we designed a multi-task learning loss function to correct wind speed and wind direction simultaneously using only one model. The study area was the western North Pacific (WNP), and real-time rolling bias corrections were made for 10-day wind-field forecasts released by the EC between December 2020 and November 2021, divided into four seasons. Compared with the original EC forecasts, after correction using the MT-DETrajGRU model the wind speed and wind direction biases in the four seasons were reduced by 8-11% and 9-14%, respectively. In addition, the proposed method modelled the data uniformly under different weather conditions. The correction performance under normal and typhoon conditions was comparable, indicating that the data-driven mode constructed here is robust and generalizable.
GIDN: A Lightweight Graph Inception Diffusion Network for High-efficient Link Prediction
Wang, Zixiao, Guo, Yuluo, Zhao, Jin, Zhang, Yu, Yu, Hui, Liao, Xiaofei, Jin, Hai, Wang, Biao, Yu, Ting
In this paper, we propose a Graph Inception Diffusion Networks(GIDN) model. This model generalizes graph diffusion in different feature spaces, and uses the inception module to avoid the large amount of computations caused by complex network structures. We evaluate GIDN model on Open Graph Benchmark(OGB) datasets, reached an 11% higher performance than AGDN on ogbl-collab dataset.
STNN-DDI: A Substructure-aware Tensor Neural Network to Predict Drug-Drug Interactions
Yu, Hui, Zhao, ShiYu, Shi, JianYu
Motivation: Computational prediction of multiple-type drug-drug interaction (DDI) helps reduce unexpected side effects in poly-drug treatments. Although existing computational approaches achieve inspiring results, they ignore that the action of a drug is mainly caused by its chemical substructures. In addition, their interpretability is still weak. Results: In this paper, by supposing that the interactions between two given drugs are caused by their local chemical structures (sub-structures) and their DDI types are determined by the linkages between different substructure sets, we design a novel Substructure-ware Tensor Neural Network model for DDI prediction (STNN-DDI). The proposed model learns a 3-D tensor of (substructure, in-teraction type, substructure) triplets, which characterizes a substructure-substructure interaction (SSI) space. According to a list of predefined substructures with specific chemical meanings, the mapping of drugs into this SSI space enables STNN-DDI to perform the multiple-type DDI prediction in both transductive and inductive scenarios in a unified form with an explicable manner. The compar-ison with deep learning-based state-of-the-art baselines demonstrates the superiority of STNN-DDI with the significant improvement of AUC, AUPR, Accuracy, and Precision. More importantly, case studies illustrate its interpretability by both revealing a crucial sub-structure pair across drugs regarding a DDI type of interest and uncovering interaction type-specific substructure pairs in a given DDI. In summary, STNN-DDI provides an effective approach to predicting DDIs as well as explaining the interaction mechanisms among drugs.
Deep Clustering With Intra-class Distance Constraint for Hyperspectral Images
Sun, Jinguang, Wang, Wanli, Wei, Xian, Fang, Li, Tang, Xiaoliang, Xu, Yusheng, Yu, Hui, Yao, Wei
The high dimensionality of hyperspectral images often results in the degradation of clustering performance. Due to the powerful ability of deep feature extraction and non-linear feature representation, the clustering algorithm based on deep learning has become a hot research topic in the field of hyperspectral remote sensing. However, most deep clustering algorithms for hyperspectral images utilize deep neural networks as feature extractor without considering prior knowledge constraints that are suitable for clustering. To solve this problem, we propose an intra-class distance constrained deep clustering algorithm for high-dimensional hyperspectral images. The proposed algorithm constrains the feature mapping procedure of the auto-encoder network by intra-class distance so that raw images are transformed from the original high-dimensional space to the low-dimensional feature space that is more conducive to clustering. Furthermore, the related learning process is treated as a joint optimization problem of deep feature extraction and clustering. Experimental results demonstrate the intense competitiveness of the proposed algorithm in comparison with state-of-the-art clustering methods of hyperspectral images.