Yu, Haoyang
Combining Priors with Experience: Confidence Calibration Based on Binomial Process Modeling
Dong, Jinzong, Jiang, Zhaohui, Pan, Dong, Yu, Haoyang
Confidence calibration of classification models is a technique to estimate the true posterior probability of the predicted class, which is critical for ensuring reliable decision-making in practical applications. Existing confidence calibration methods mostly use statistical techniques to estimate the calibration curve from data or fit a user-defined calibration function, but often overlook fully mining and utilizing the prior distribution behind the calibration curve. However, a well-informed prior distribution can provide valuable insights beyond the empirical data under the limited data or low-density regions of confidence scores. To fill this gap, this paper proposes a new method that integrates the prior distribution behind the calibration curve with empirical data to estimate a continuous calibration curve, which is realized by modeling the sampling process of calibration data as a binomial process and maximizing the likelihood function of the binomial process. We prove that the calibration curve estimating method is Lipschitz continuous with respect to data distribution and requires a sample size of $3/B$ of that required for histogram binning, where $B$ represents the number of bins. Also, a new calibration metric ($TCE_{bpm}$), which leverages the estimated calibration curve to estimate the true calibration error (TCE), is designed. $TCE_{bpm}$ is proven to be a consistent calibration measure. Furthermore, realistic calibration datasets can be generated by the binomial process modeling from a preset true calibration curve and confidence score distribution, which can serve as a benchmark to measure and compare the discrepancy between existing calibration metrics and the true calibration error. The effectiveness of our calibration method and metric are verified in real-world and simulated data.
Nonlinear MPC for Quadrotors in Close-Proximity Flight with Neural Network Downwash Prediction
Li, Jinjie, Han, Liang, Yu, Haoyang, Lin, Yuheng, Li, Qingdong, Ren, Zhang
Swarm aerial robots are required to maintain close proximity to successfully traverse narrow areas in cluttered environments. However, this movement is affected by the downwash effect generated from other quadrotors in the swarm. This aerodynamic effect is highly nonlinear and hard to describe through mathematical modeling. Additionally, the existence of the downwash disturbance can be predicted based on the states of neighboring quadrotors. If this prediction is considered, the control loop can proactively handle the disturbance, resulting in improved performance. To address these challenges, we propose an approach that integrates a Neural network Downwash Predictor with Nonlinear Model Predictive Control (NDP-NMPC). The neural network is trained with spectral normalization to ensure robustness and safety in uncollected cases. The predicted disturbances are then incorporated into the optimization scheme in NMPC, which enforces constraints to ensure that states and inputs remain within safe limits. We also design a quadrotor system, identify its parameters, and implement the proposed method on board. Finally, we conduct a prediction experiment to validate the safety and effectiveness of the network. In addition, a real-time trajectory tracking experiment is performed with the entire system, demonstrating a 75.37% reduction in tracking error in height under the downwash effect.
Potato: A Data-Oriented Programming 3D Simulator for Large-Scale Heterogeneous Swarm Robotics
Li, Jinjie, Han, Liang, Yu, Haoyang, Wang, Zhaotian, Yang, Pengzhi, Yan, Ziwei, Ren, Zhang
Large-scale simulation with realistic nonlinear dynamic models is crucial for algorithms development for swarm robotics. However, existing platforms are mainly developed based on Object-Oriented Programming (OOP) and either use simple kinematic models to pursue a large number of simulating nodes or implement realistic dynamic models with limited simulating nodes. In this paper, we develop a simulator based on Data-Oriented Programming (DOP) that utilizes GPU parallel computing to achieve large-scale swarm robotic simulations. Specifically, we use a multi-process approach to simulate heterogeneous agents and leverage PyTorch with GPU to simulate homogeneous agents with a large number. We test our approach using a nonlinear quadrotor model and demonstrate that this DOP approach can maintain almost the same computational speed when quadrotors are less than 5,000. We also provide two examples to present the functionality of the platform.
Multitask Learning for Citation Purpose Classification
Oesterling, Alex, Ghosal, Angikar, Yu, Haoyang, Xin, Rui, Baig, Yasa, Semenova, Lesia, Rudin, Cynthia
We present our entry into the 2021 3C Shared Task Citation Context Classification based on Purpose competition. The goal of the competition is to classify a citation in a scientific article based on its purpose. This task is important because it could potentially lead to more comprehensive ways of summarizing the purpose and uses of scientific articles, but it is also difficult, mainly due to the limited amount of available training data in which the purposes of each citation have been hand-labeled, along with the subjectivity of these labels. Our entry in the competition is a multi-task model that combines multiple modules designed to handle the problem from different perspectives, including hand-generated linguistic features, TF-IDF features, and an LSTM-with-attention model. We also provide an ablation study and feature analysis whose insights could lead to future work.