Goto

Collaborating Authors

 Yu, Fufu


SoccerNet 2023 Challenges Results

arXiv.org Artificial Intelligence

The SoccerNet 2023 challenges were the third annual video understanding challenges organized by the SoccerNet team. For this third edition, the challenges were composed of seven vision-based tasks split into three main themes. The first theme, broadcast video understanding, is composed of three high-level tasks related to describing events occurring in the video broadcasts: (1) action spotting, focusing on retrieving all timestamps related to global actions in soccer, (2) ball action spotting, focusing on retrieving all timestamps related to the soccer ball change of state, and (3) dense video captioning, focusing on describing the broadcast with natural language and anchored timestamps. The second theme, field understanding, relates to the single task of (4) camera calibration, focusing on retrieving the intrinsic and extrinsic camera parameters from images. The third and last theme, player understanding, is composed of three low-level tasks related to extracting information about the players: (5) re-identification, focusing on retrieving the same players across multiple views, (6) multiple object tracking, focusing on tracking players and the ball through unedited video streams, and (7) jersey number recognition, focusing on recognizing the jersey number of players from tracklets. Compared to the previous editions of the SoccerNet challenges, tasks (2-3-7) are novel, including new annotations and data, task (4) was enhanced with more data and annotations, and task (6) now focuses on end-to-end approaches. More information on the tasks, challenges, and leaderboards are available on https://www.soccer-net.org. Baselines and development kits can be found on https://github.com/SoccerNet.


Solution for Large-scale Long-tailed Recognition with Noisy Labels

arXiv.org Artificial Intelligence

This is a technical report for CVPR 2021 AliProducts Challenge. AliProducts Challenge is a competition proposed for studying the large-scale and fine-grained commodity image recognition problem encountered by worldleading ecommerce companies. The large-scale product recognition simultaneously meets the challenge of noisy annotations, imbalanced (long-tailed) data distribution and fine-grained classification. In our solution, we adopt stateof-the-art model architectures of both CNNs and Transformer, including ResNeSt, EfficientNetV2, and DeiT. We found that iterative data cleaning, classifier weight normalization, high-resolution finetuning, and test time augmentation are key components to improve the performance of training with the noisy and imbalanced dataset. Finally, we obtain 6.4365% mean class error rate in the leaderboard with our ensemble model.


One for More: Selecting Generalizable Samples for Generalizable ReID Model

arXiv.org Artificial Intelligence

Current training objectives of existing person Re-IDentification (ReID) models only ensure that the loss of the model decreases on selected training batch, with no regards to the performance on samples outside the batch. It will inevitably cause the model to over-fit the data in the dominant position (e.g., head data in imbalanced class, easy samples or noisy samples). %We call the sample that updates the model towards generalizing on more data a generalizable sample. The latest resampling methods address the issue by designing specific criterion to select specific samples that trains the model generalize more on certain type of data (e.g., hard samples, tail data), which is not adaptive to the inconsistent real world ReID data distributions. Therefore, instead of simply presuming on what samples are generalizable, this paper proposes a one-for-more training objective that directly takes the generalization ability of selected samples as a loss function and learn a sampler to automatically select generalizable samples. More importantly, our proposed one-for-more based sampler can be seamlessly integrated into the ReID training framework which is able to simultaneously train ReID models and the sampler in an end-to-end fashion. The experimental results show that our method can effectively improve the ReID model training and boost the performance of ReID models.