Yu, Cheng
FaceChain-FACT: Face Adapter with Decoupled Training for Identity-preserved Personalization
Yu, Cheng, Xie, Haoyu, Shang, Lei, Liu, Yang, Dan, Jun, Bo, Liefeng, Sun, Baigui
In the field of human-centric personalized image generation, the adapter-based method obtains the ability to customize and generate portraits by text-to-image training on facial data. This allows for identity-preserved personalization without additional fine-tuning in inference. Although there are improvements in efficiency and fidelity, there is often a significant performance decrease in test following ability, controllability, and diversity of generated faces compared to the base model. In this paper, we analyze that the performance degradation is attributed to the failure to decouple identity features from other attributes during extraction, as well as the failure to decouple the portrait generation training from the overall generation task. To address these issues, we propose the Face Adapter with deCoupled Training (FACT) framework, focusing on both model architecture and training strategy. To decouple identity features from others, we leverage a transformer-based face-export encoder and harness fine-grained identity features. To decouple the portrait generation training, we propose Face Adapting Increment Regularization~(FAIR), which effectively constrains the effect of face adapters on the facial region, preserving the generative ability of the base model. Additionally, we incorporate a face condition drop and shuffle mechanism, combined with curriculum learning, to enhance facial controllability and diversity. As a result, FACT solely learns identity preservation from training data, thereby minimizing the impact on the original text-to-image capabilities of the base model. Extensive experiments show that FACT has both controllability and fidelity in both text-to-image generation and inpainting solutions for portrait generation.
AV-CrossNet: an Audiovisual Complex Spectral Mapping Network for Speech Separation By Leveraging Narrow- and Cross-Band Modeling
Kalkhorani, Vahid Ahmadi, Yu, Cheng, Kumar, Anurag, Tan, Ke, Xu, Buye, Wang, DeLiang
Adding visual cues to audio-based speech separation can improve separation performance. This paper introduces AV-CrossNet, an audiovisual (AV) system for speech enhancement, target speaker extraction, and multi-talker speaker separation. AV-CrossNet is extended from the CrossNet architecture, which is a recently proposed network that performs complex spectral mapping for speech separation by leveraging global attention and positional encoding. To effectively utilize visual cues, the proposed system incorporates pre-extracted visual embeddings and employs a visual encoder comprising temporal convolutional layers. Audio and visual features are fused in an early fusion layer before feeding to AV-CrossNet blocks. We evaluate AV-CrossNet on multiple datasets, including LRS, VoxCeleb, and COG-MHEAR challenge. Evaluation results demonstrate that AV-CrossNet advances the state-of-the-art performance in all audiovisual tasks, even on untrained and mismatched datasets.
FaceChain: A Playground for Human-centric Artificial Intelligence Generated Content
Liu, Yang, Yu, Cheng, Shang, Lei, He, Yongyi, Wu, Ziheng, Wang, Xingjun, Xu, Chao, Xie, Haoyu, Wang, Weida, Zhao, Yuze, Zhu, Lin, Cheng, Chen, Chen, Weitao, Yao, Yuan, Zhou, Wenmeng, Xu, Jiaqi, Wang, Qiang, Chen, Yingda, Xie, Xuansong, Sun, Baigui
Recent advancement in personalized image generation have unveiled the intriguing capability of pre-trained text-to-image models on learning identity information from a collection of portrait images. However, existing solutions are vulnerable in producing truthful details, and usually suffer from several defects such as (i) The generated face exhibit its own unique characteristics, \ie facial shape and facial feature positioning may not resemble key characteristics of the input, and (ii) The synthesized face may contain warped, blurred or corrupted regions. In this paper, we present FaceChain, a personalized portrait generation framework that combines a series of customized image-generation model and a rich set of face-related perceptual understanding models (\eg, face detection, deep face embedding extraction, and facial attribute recognition), to tackle aforementioned challenges and to generate truthful personalized portraits, with only a handful of portrait images as input. Concretely, we inject several SOTA face models into the generation procedure, achieving a more efficient label-tagging, data-processing, and model post-processing compared to previous solutions, such as DreamBooth ~\cite{ruiz2023dreambooth} , InstantBooth ~\cite{shi2023instantbooth} , or other LoRA-only approaches ~\cite{hu2021lora} . Besides, based on FaceChain, we further develop several applications to build a broader playground for better showing its value, including virtual try on and 2D talking head. We hope it can grow to serve the burgeoning needs from the communities. Note that this is an ongoing work that will be consistently refined and improved upon. FaceChain is open-sourced under Apache-2.0 license at \url{https://github.com/modelscope/facechain}.
Using fine-tuning and min lookahead beam search to improve Whisper
Do, Andrea, Brown, Oscar, Wang, Zhengjie, Mathew, Nikhil, Liu, Zixin, Ahmed, Jawwad, Yu, Cheng
The performance of Whisper in low-resource languages is still far from perfect. In addition to a lack of training data on low-resource languages, we identify some limitations in the beam search algorithm used in Whisper. To address these issues, we fine-tune Whisper on additional data and propose an improved decoding algorithm. On the Vietnamese language, fine-tuning Whisper-Tiny with LoRA leads to an improvement of 38.49 in WER over the zero-shot Whisper-Tiny setting which is a further reduction of 1.45 compared to full-parameter fine-tuning. Additionally, by using Filter-Ends and Min Lookahead decoding algorithms, the WER reduces by 2.26 on average over a range of languages compared to standard beam search. These results generalise to larger Whisper model sizes. We also prove a theorem that Min Lookahead outperforms the standard beam search algorithm used in Whisper.
Cross-Utterance Conditioned VAE for Speech Generation
Li, Yang, Yu, Cheng, Sun, Guangzhi, Zu, Weiqin, Tian, Zheng, Wen, Ying, Pan, Wei, Zhang, Chao, Wang, Jun, Yang, Yang, Sun, Fanglei
Speech synthesis systems powered by neural networks hold promise for multimedia production, but frequently face issues with producing expressive speech and seamless editing. In response, we present the Cross-Utterance Conditioned Variational Autoencoder speech synthesis (CUC-VAE S2) framework to enhance prosody and ensure natural speech generation. This framework leverages the powerful representational capabilities of pre-trained language models and the re-expression abilities of variational autoencoders (VAEs). The core component of the CUC-VAE S2 framework is the cross-utterance CVAE, which extracts acoustic, speaker, and textual features from surrounding sentences to generate context-sensitive prosodic features, more accurately emulating human prosody generation. We further propose two practical algorithms tailored for distinct speech synthesis applications: CUC-VAE TTS for text-to-speech and CUC-VAE SE for speech editing. The CUC-VAE TTS is a direct application of the framework, designed to generate audio with contextual prosody derived from surrounding texts. On the other hand, the CUC-VAE SE algorithm leverages real mel spectrogram sampling conditioned on contextual information, producing audio that closely mirrors real sound and thereby facilitating flexible speech editing based on text such as deletion, insertion, and replacement. Experimental results on the LibriTTS datasets demonstrate that our proposed models significantly enhance speech synthesis and editing, producing more natural and expressive speech.
Improving Speech Enhancement Performance by Leveraging Contextual Broad Phonetic Class Information
Lu, Yen-Ju, Chang, Chia-Yu, Yu, Cheng, Liu, Ching-Feng, Hung, Jeih-weih, Watanabe, Shinji, Tsao, Yu
Previous studies have confirmed that by augmenting acoustic features with the place/manner of articulatory features, the speech enhancement (SE) process can be guided to consider the broad phonetic properties of the input speech when performing enhancement to attain performance improvements. In this paper, we explore the contextual information of articulatory attributes as additional information to further benefit SE. More specifically, we propose to improve the SE performance by leveraging losses from an end-to-end automatic speech recognition (E2E-ASR) model that predicts the sequence of broad phonetic classes (BPCs). We also developed multi-objective training with ASR and perceptual losses to train the SE system based on a BPC-based E2E-ASR. Experimental results from speech denoising, speech dereverberation, and impaired speech enhancement tasks confirmed that contextual BPC information improves SE performance. Moreover, the SE model trained with the BPC-based E2E-ASR outperforms that with the phoneme-based E2E-ASR. The results suggest that objectives with misclassification of phonemes by the ASR system may lead to imperfect feedback, and BPC could be a potentially better choice. Finally, it is noted that combining the most-confusable phonetic targets into the same BPC when calculating the additional objective can effectively improve the SE performance.
Perceptual Contrast Stretching on Target Feature for Speech Enhancement
Chao, Rong, Yu, Cheng, Fu, Szu-Wei, Lu, Xugang, Tsao, Yu
Speech enhancement (SE) performance has improved considerably owing to the use of deep learning models as a base function. Herein, we propose a perceptual contrast stretching (PCS) approach to further improve SE performance. The PCS is derived based on the critical band importance function and is applied to modify the targets of the SE model. Specifically, the contrast of target features is stretched based on perceptual importance, thereby improving the overall SE performance. Compared with post-processing-based implementations, incorporating PCS into the training phase preserves performance and reduces online computation. Notably, PCS can be combined with different SE model architectures and training criteria. Furthermore, PCS does not affect the causality or convergence of SE model training. Experimental results on the VoiceBank-DEMAND dataset show that the proposed method can achieve state-of-the-art performance on both causal (PESQ score = 3.07) and noncausal (PESQ score = 3.35) SE tasks.
HASA-net: A non-intrusive hearing-aid speech assessment network
Chiang, Hsin-Tien, Wu, Yi-Chiao, Yu, Cheng, Toda, Tomoki, Wang, Hsin-Min, Hu, Yih-Chun, Tsao, Yu
Without the need of a clean reference, non-intrusive speech assessment methods have caught great attention for objective evaluations. Recently, deep neural network (DNN) models have been applied to build non-intrusive speech assessment approaches and confirmed to provide promising performance. However, most DNN-based approaches are designed for normal-hearing listeners without considering hearing-loss factors. In this study, we propose a DNN-based hearing aid speech assessment network (HASA-Net), formed by a bidirectional long short-term memory (BLSTM) model, to predict speech quality and intelligibility scores simultaneously according to input speech signals and specified hearing-loss patterns. To the best of our knowledge, HASA-Net is the first work to incorporate quality and intelligibility assessments utilizing a unified DNN-based non-intrusive model for hearing aids. Experimental results show that the predicted speech quality and intelligibility scores of HASA-Net are highly correlated to two well-known intrusive hearing-aid evaluation metrics, hearing aid speech quality index (HASQI) and hearing aid speech perception index (HASPI), respectively.
MetricGAN+: An Improved Version of MetricGAN for Speech Enhancement
Fu, Szu-Wei, Yu, Cheng, Hsieh, Tsun-An, Plantinga, Peter, Ravanelli, Mirco, Lu, Xugang, Tsao, Yu
The discrepancy between the cost function used for training a speech enhancement model and human auditory perception usually makes the quality of enhanced speech unsatisfactory. Objective evaluation metrics which consider human perception can hence serve as a bridge to reduce the gap. Our previously proposed MetricGAN was designed to optimize objective metrics by connecting the metric with a discriminator. Because only the scores of the target evaluation functions are needed during training, the metrics can even be non-differentiable. In this study, we propose a MetricGAN+ in which three training techniques incorporating domain-knowledge of speech processing are proposed. With these techniques, experimental results on the VoiceBank-DEMAND dataset show that MetricGAN+ can increase PESQ score by 0.3 compared to the previous MetricGAN and achieve state-of-the-art results (PESQ score = 3.15).
Increasing Compactness Of Deep Learning Based Speech Enhancement Models With Parameter Pruning And Quantization Techniques
Wu, Jyun-Yi, Yu, Cheng, Fu, Szu-Wei, Liu, Chih-Ting, Chien, Shao-Yi, Tsao, Yu
Most recent studies on deep learning based speech enhancement (SE) focused on improving denoising performance. However, successful SE applications require striking a desirable balance between denoising performance and computational cost in real scenarios. In this study, we propose a novel parameter pruning (PP) technique, which removes redundant channels in a neural network. In addition, a parameter quantization (PQ) technique was applied to reduce the size of a neural network by representing weights with fewer cluster centroids. Because the techniques are derived based on different concepts, the PP and PQ can be integrated to provide even more compact SE models. The experimental results show that the PP and PQ techniques produce a compacted SE model with a size of only 10.03% compared to that of the original model, resulting in minor performance losses of 1.43% (from 0.70 to 0.69) for STOI and 3.24% (from 1.85 to 1.79) for PESQ. The promising results suggest that the PP and PQ techniques can be used in a SE system in devices with limited storage and computation resources.