Goto

Collaborating Authors

 Yu, Beibei


A Survey of Large Language Models in Psychotherapy: Current Landscape and Future Directions

arXiv.org Artificial Intelligence

Mental health remains a critical global challenge, with increasing demand for accessible, effective interventions. Large language models (LLMs) offer promising solutions in psychotherapy by enhancing the assessment, diagnosis, and treatment of mental health conditions through dynamic, context-aware interactions. This survey provides a comprehensive overview of the current landscape of LLM applications in psychotherapy, highlighting the roles of LLMs in symptom detection, severity estimation, cognitive assessment, and therapeutic interventions. We present a novel conceptual taxonomy to organize the psychotherapy process into three core components: assessment, diagnosis, and treatment, and examine the challenges and advancements in each area. The survey also addresses key research gaps, including linguistic biases, limited disorder coverage, and underrepresented therapeutic models. Finally, we discuss future directions to integrate LLMs into a holistic, end-to-end psychotherapy framework, addressing the evolving nature of mental health conditions and fostering more inclusive, personalized care.


NoiseHGNN: Synthesized Similarity Graph-Based Neural Network For Noised Heterogeneous Graph Representation Learning

arXiv.org Artificial Intelligence

Real-world graph data environments intrinsically exist noise (e.g., link and structure errors) that inevitably disturb the effectiveness of graph representation and downstream learning tasks. For homogeneous graphs, the latest works use original node features to synthesize a similarity graph that can correct the structure of the noised graph. This idea is based on the homogeneity assumption, which states that similar nodes in the homogeneous graph tend to have direct links in the original graph. However, similar nodes in heterogeneous graphs usually do not have direct links, which can not be used to correct the original noise graph. This causes a significant challenge in noised heterogeneous graph learning. To this end, this paper proposes a novel synthesized similarity-based graph neural network compatible with noised heterogeneous graph learning. First, we calculate the original feature similarities of all nodes to synthesize a similarity-based high-order graph. Second, we propose a similarity-aware encoder to embed original and synthesized graphs with shared parameters. Then, instead of graph-to-graph supervising, we synchronously supervise the original and synthesized graph embeddings to predict the same labels. Meanwhile, a target-based graph extracted from the synthesized graph contrasts the structure of the metapath-based graph extracted from the original graph to learn the mutual information. Extensive experiments in numerous real-world datasets show the proposed method achieves state-of-the-art records in the noised heterogeneous graph learning tasks. In highlights, +5$\sim$6\% improvements are observed in several noised datasets compared with previous SOTA methods. The code and datasets are available at https://github.com/kg-cc/NoiseHGNN.


MineAgent: Towards Remote-Sensing Mineral Exploration with Multimodal Large Language Models

arXiv.org Artificial Intelligence

Remote-sensing mineral exploration is critical for identifying economically viable mineral deposits, yet it poses significant challenges for multimodal large language models (MLLMs). These include limitations in domain-specific geological knowledge and difficulties in reasoning across multiple remote-sensing images, further exacerbating long-context issues. To address these, we present MineAgent, a modular framework leveraging hierarchical judging and decision-making modules to improve multi-image reasoning and spatial-spectral integration. Complementing this, we propose MineBench, a benchmark specific for evaluating MLLMs in domain-specific mineral exploration tasks using geological and hyperspectral data. Extensive experiments demonstrate the effectiveness of MineAgent, highlighting its potential to advance MLLMs in remote-sensing mineral exploration.