Goto

Collaborating Authors

 Young, Susannah


Scaling Language Models: Methods, Analysis & Insights from Training Gopher

arXiv.org Artificial Intelligence

Natural language communication is core to intelligence, as it allows ideas to be efficiently shared between humans or artificially intelligent systems. The generality of language allows us to express many intelligence tasks as taking in natural language input and producing natural language output. Autoregressive language modelling -- predicting the future of a text sequence from its past -- provides a simple yet powerful objective that admits formulation of numerous cognitive tasks. At the same time, it opens the door to plentiful training data: the internet, books, articles, code, and other writing. However this training objective is only an approximation to any specific goal or application, since we predict everything in the sequence rather than only the aspects we care about. Yet if we treat the resulting models with appropriate caution, we believe they will be a powerful tool to capture some of the richness of human intelligence. Using language models as an ingredient towards intelligence contrasts with their original application: transferring text over a limited-bandwidth communication channel. Shannon's Mathematical Theory of Communication (Shannon, 1948) linked the statistical modelling of natural language with compression, showing that measuring the cross entropy of a language model is equivalent to measuring its compression rate.


Pitfalls of Static Language Modelling

arXiv.org Artificial Intelligence

Our world is open-ended, non-stationary and constantly evolving; thus what we talk about and how we talk about it changes over time. This inherent dynamic nature of language comes in stark contrast to the current static language modelling paradigm, which constructs training and evaluation sets from overlapping time periods. Despite recent progress, we demonstrate that state-of-the-art Transformer models perform worse in the realistic setup of predicting future utterances from beyond their training period -- a consistent pattern across three datasets from two domains. We find that, while increasing model size alone -- a key driver behind recent progress -- does not provide a solution for the temporal generalization problem, having models that continually update their knowledge with new information can indeed slow down the degradation over time. Hence, given the compilation of ever-larger language modelling training datasets, combined with the growing list of language-model-based NLP applications that require up-to-date knowledge about the world, we argue that now is the right time to rethink our static language modelling evaluation protocol, and develop adaptive language models that can remain up-to-date with respect to our ever-changing and non-stationary world.