Goto

Collaborating Authors

 You, Hengxu


AI Generations: From AI 1.0 to AI 4.0

arXiv.org Artificial Intelligence

This paper proposes that Artificial Intelligence (AI) progresses through several overlapping generations: AI 1.0 (Information AI), AI 2.0 (Agentic AI), AI 3.0 (Physical AI), and now a speculative AI 4.0 (Conscious AI). Each of these AI generations is driven by shifting priorities among algorithms, computing power, and data. AI 1.0 ushered in breakthroughs in pattern recognition and information processing, fueling advances in computer vision, natural language processing, and recommendation systems. AI 2.0 built on these foundations through real-time decision-making in digital environments, leveraging reinforcement learning and adaptive planning for agentic AI applications. AI 3.0 extended intelligence into physical contexts, integrating robotics, autonomous vehicles, and sensor-fused control systems to act in uncertain real-world settings. Building on these developments, AI 4.0 puts forward the bold vision of self-directed AI capable of setting its own goals, orchestrating complex training regimens, and possibly exhibiting elements of machine consciousness. This paper traces the historical foundations of AI across roughly seventy years, mapping how changes in technological bottlenecks from algorithmic innovation to high-performance computing to specialized data, have spurred each generational leap. It further highlights the ongoing synergies among AI 1.0, 2.0, 3.0, and 4.0, and explores the profound ethical, regulatory, and philosophical challenges that arise when artificial systems approach (or aspire to) human-like autonomy. Ultimately, understanding these evolutions and their interdependencies is pivotal for guiding future research, crafting responsible governance, and ensuring that AI transformative potential benefits society as a whole.


Force-Based Robotic Imitation Learning: A Two-Phase Approach for Construction Assembly Tasks

arXiv.org Artificial Intelligence

Robots have shown enormous potential to alleviate repetitive, and dangerous tasks from human workers, such as assembly, infrastructure inspection, material handling and heavy rigging [4-6]. Integrating the artificial intelligence (AI) agent with a physical robotic system could further improve the precision, reliability, and consistency of operations with competent training [7, 8]. While AI-enabled robots excel in performing repetitive and predefined tasks, dexterous and complex tasks still pose a significant difficulty such as welding and pipe insertion [9, 10]. Training a robot to perform these dexterous tasks demands delicate manipulation and adaptive force control, which induces diversity and several potential actions leading to a substantial increase in the complexity of the learning process and resulting in slow convergence or lack of convergence [11] To tackle the challenges of learning in high-dimensional action spaces, Imitation Learning (IL) based methods are applied to leverage demonstrations from human experts or proficient use of human demonstrations as a form of instruction and reduce the size of action spaces that need to be explored [12-14]. Generative Adversarial Imitation Learning (GAIL)[15] could further address some key limitations of traditional IL by mitigating distributional shifts, thus enabling better exploration and performance in unseen states and generalizing better to new tasks [15].


Temporal Binding Foundation Model for Material Property Recognition via Tactile Sequence Perception

arXiv.org Artificial Intelligence

Robots engaged in complex manipulation tasks require robust material property recognition to ensure adaptability and precision. Traditionally, visual data has been the primary source for object perception; however, it often proves insufficient in scenarios where visibility is obstructed or detailed observation is needed. This gap highlights the necessity of tactile sensing as a complementary or primary input for material recognition. Tactile data becomes particularly essential in contact-rich, small-scale manipulations where subtle deformations and surface interactions cannot be accurately captured by vision alone. This letter presents a novel approach leveraging a temporal binding foundation model for tactile sequence understanding to enhance material property recognition. By processing tactile sensor data with a temporal focus, the proposed system captures the sequential nature of tactile interactions, similar to human fingertip perception. Additionally, this letter demonstrates that, through tailored and specific design, the foundation model can more effectively capture temporal information embedded in tactile sequences, advancing material property understanding. Experimental results validate the model's capability to capture these temporal patterns, confirming its utility for material property recognition in visually restricted scenarios. This work underscores the necessity of embedding advanced tactile data processing frameworks within robotic systems to achieve truly embodied and responsive manipulation capabilities.


Improved Trust in Human-Robot Collaboration with ChatGPT

arXiv.org Artificial Intelligence

Human robot collaboration is becoming increasingly important as robots become more involved in various aspects of human life in the era of Artificial Intelligence. However, the issue of human operators trust in robots remains a significant concern, primarily due to the lack of adequate semantic understanding and communication between humans and robots. The emergence of Large Language Models (LLMs), such as ChatGPT, provides an opportunity to develop an interactive, communicative, and robust human-robot collaboration approach. This paper explores the impact of ChatGPT on trust in a human-robot collaboration assembly task. This study designs a robot control system called RoboGPT using ChatGPT to control a 7-degree-of-freedom robot arm to help human operators fetch, and place tools, while human operators can communicate with and control the robot arm using natural language. A human-subject experiment showed that incorporating ChatGPT in robots significantly increased trust in human-robot collaboration, which can be attributed to the robot's ability to communicate more effectively with humans. Furthermore, ChatGPT ability to understand the nuances of human language and respond appropriately helps to build a more natural and intuitive human-robot interaction. The findings of this study have significant implications for the development of human-robot collaboration systems.


Robot-Enabled Construction Assembly with Automated Sequence Planning based on ChatGPT: RoboGPT

arXiv.org Artificial Intelligence

Robot-based assembly in construction has emerged as a promising solution to address numerous challenges such as increasing costs, labor shortages, and the demand for safe and efficient construction processes. One of the main obstacles in realizing the full potential of these robotic systems is the need for effective and efficient sequence planning for construction tasks. Current approaches, including mathematical and heuristic techniques or machine learning methods, face limitations in their adaptability and scalability to dynamic construction environments. To expand the ability of the current robot system in sequential understanding, this paper introduces RoboGPT, a novel system that leverages the advanced reasoning capabilities of ChatGPT, a large language model, for automated sequence planning in robot-based assembly applied to construction tasks. The proposed system adapts ChatGPT for construction sequence planning and demonstrate its feasibility and effectiveness through experimental evaluation including Two case studies and 80 trials about real construction tasks. The results show that RoboGPT-driven robots can handle complex construction operations and adapt to changes on the fly. This paper contributes to the ongoing efforts to enhance the capabilities and performance of robot-based assembly systems in the construction industry, and it paves the way for further integration of large language model technologies in the field of construction robotics.