Yoon, Se-eun
Solving the Content Gap in Roblox Game Recommendations: LLM-Based Profile Generation and Reranking
Wang, Chen, Wei, Xiaokai, Jiang, Yexi, Ong, Frank, Gao, Kevin, Yu, Xiao, Hui, Zheng, Yoon, Se-eun, Yu, Philip, Gong, Michelle
With the vast and dynamic user-generated content on Roblox, creating effective game recommendations requires a deep understanding of game content. Traditional recommendation models struggle with the inconsistent and sparse nature of game text features such as titles and descriptions. Recent advancements in large language models (LLMs) offer opportunities to enhance recommendation systems by analyzing in-game text data. This paper addresses two challenges: generating high-quality, structured text features for games without extensive human annotation, and validating these features to ensure they improve recommendation relevance. We propose an approach that extracts in-game text and uses LLMs to infer attributes such as genre and gameplay objectives from raw player interactions. Additionally, we introduce an LLM-based re-ranking mechanism to assess the effectiveness of the generated text features, enhancing personalization and user satisfaction. Beyond recommendations, our approach supports applications such as user engagement-based integrity detection, already deployed in production. This scalable framework demonstrates the potential of in-game text understanding to improve recommendation quality on Roblox and adapt recommendations to its unique, user-generated ecosystem.
OMuleT: Orchestrating Multiple Tools for Practicable Conversational Recommendation
Yoon, Se-eun, Wei, Xiaokai, Jiang, Yexi, Pareek, Rachit, Ong, Frank, Gao, Kevin, McAuley, Julian, Gong, Michelle
In this paper, we present a systematic effort to design, evaluate, and implement a realistic conversational recommender system (CRS). The objective of our system is to allow users to input free-form text to request recommendations, and then receive a list of relevant and diverse items. While previous work on synthetic queries augments large language models (LLMs) with 1-3 tools, we argue that a more extensive toolbox is necessary to effectively handle real user requests. As such, we propose a novel approach that equips LLMs with over 10 tools, providing them access to the internal knowledge base and API calls used in production. We evaluate our model on a dataset of real users and show that it generates relevant, novel, and diverse recommendations compared to vanilla LLMs. Furthermore, we conduct ablation studies to demonstrate the effectiveness of using the full range of tools in our toolbox. We share our designs and lessons learned from deploying the system for internal alpha release. Our contribution is the addressing of all four key aspects of a practicable CRS: (1) real user requests, (2) augmenting LLMs with a wide variety of tools, (3) extensive evaluation, and (4) deployment insights.
Imagery as Inquiry: Exploring A Multimodal Dataset for Conversational Recommendation
Yoon, Se-eun, Jeon, Hyunsik, McAuley, Julian
We introduce a multimodal dataset where users express preferences through images. These images encompass a broad spectrum of visual expressions ranging from landscapes to artistic depictions. Users request recommendations for books or music that evoke similar feelings to those captured in the images, and recommendations are endorsed by the community through upvotes. This dataset supports two recommendation tasks: title generation and multiple-choice selection. Our experiments with large foundation models reveal their limitations in these tasks. Particularly, vision-language models show no significant advantage over language-only counterparts that use descriptions, which we hypothesize is due to underutilized visual capabilities. To better harness these abilities, we propose the chain-of-imagery prompting, which results in notable improvements. We release our code and datasets.
Evaluating Large Language Models as Generative User Simulators for Conversational Recommendation
Yoon, Se-eun, He, Zhankui, Echterhoff, Jessica Maria, McAuley, Julian
Synthetic users are cost-effective proxies for real users in the evaluation of conversational recommender systems. Large language models show promise in simulating human-like behavior, raising the question of their ability to represent a diverse population of users. We introduce a new protocol to measure the degree to which language models can accurately emulate human behavior in conversational recommendation. This protocol is comprised of five tasks, each designed to evaluate a key property that a synthetic user should exhibit: choosing which items to talk about, expressing binary preferences, expressing open-ended preferences, requesting recommendations, and giving feedback. Through evaluation of baseline simulators, we demonstrate these tasks effectively reveal deviations of language models from human behavior, and offer insights on how to reduce the deviations with model selection and prompting strategies.
Solving Continual Combinatorial Selection via Deep Reinforcement Learning
Song, Hyungseok, Jang, Hyeryung, Tran, Hai H., Yoon, Se-eun, Son, Kyunghwan, Yun, Donggyu, Chung, Hyoju, Yi, Yung
We consider the Markov Decision Process (MDP) of selecting a subset of items at each step, termed the Select-MDP (S-MDP). The large state and action spaces of S-MDPs make them intractable to solve with typical reinforcement learning (RL) algorithms especially when the number of items is huge. In this paper, we present a deep RL algorithm to solve this issue by adopting the following key ideas. First, we convert the original S-MDP into an Iterative Select-MDP (IS-MDP), which is equivalent to the S-MDP in terms of optimal actions. IS-MDP decomposes a joint action of selecting K items simultaneously into K iterative selections resulting in the decrease of actions at the expense of an exponential increase of states. Second, we overcome this state space explo-sion by exploiting a special symmetry in IS-MDPs with novel weight shared Q-networks, which prov-ably maintain sufficient expressive power. Various experiments demonstrate that our approach works well even when the item space is large and that it scales to environments with item spaces different from those used in training.