Goto

Collaborating Authors

 Yokoo, Makoto


Analyzing Incentives and Fairness in Ordered Weighted Average for Facility Location Games

arXiv.org Artificial Intelligence

Facility location games provide an abstract model of mechanism design. In such games, a mechanism takes a profile of $n$ single-peaked preferences over an interval as an input and determines the location of a facility on the interval. In this paper, we restrict our attention to distance-based single-peaked preferences and focus on a well-known class of parameterized mechanisms called ordered weighted average methods, which is proposed by Yager in 1988 and contains several practical implementations such as the standard average and the Olympic average. We comprehensively analyze their performance in terms of both incentives and fairness. More specifically, we provide necessary and sufficient conditions on their parameters to achieve strategy-proofness, non-obvious manipulability, individual fair share, and proportional fairness, respectively.


Solving a Stackelberg Game on Transportation Networks in a Dynamic Crime Scenario: A Mixed Approach on Multi-Layer Networks

arXiv.org Artificial Intelligence

Interdicting a criminal with limited police resources is a challenging task as the criminal changes location over time. The size of the large transportation network further adds to the difficulty of this scenario. To tackle this issue, we consider the concept of a layered graph. At each time stamp, we create a copy of the entire transportation network to track the possible movements of both players, the attacker and the defenders. We consider a Stackelberg game in a dynamic crime scenario where the attacker changes location over time while the defenders attempt to interdict the attacker on his escape route. Given a set of defender strategies, the optimal attacker strategy is determined by applying Dijkstra's algorithm on the layered networks. Here, the attacker aims to minimize while the defenders aim to maximize the probability of interdiction. We develop an approximation algorithm on the layered networks to find near-optimal strategy for defenders. The efficacy of the developed approach is compared with the adopted MILP approach. We compare the results in terms of computational time and solution quality. The quality of the results demonstrates the need for the developed approach, as it effectively solves the complex problem within a short amount of time.


Online $\mathrm{L}^{\natural}$-Convex Minimization

arXiv.org Machine Learning

An online decision-making problem is a learning problem in which a player repeatedly makes decisions in order to minimize the long-term loss. These problems that emerge in applications often have nonlinear combinatorial objective functions, and developing algorithms for such problems has attracted considerable attention. An existing general framework for dealing with such objective functions is the online submodular minimization. However, practical problems are often out of the scope of this framework, since the domain of a submodular function is limited to a subset of the unit hypercube. To manage this limitation of the existing framework, we in this paper introduce the online $\mathrm{L}^{\natural}$-convex minimization, where an $\mathrm{L}^{\natural}$-convex function generalizes a submodular function so that the domain is a subset of the integer lattice. We propose computationally efficient algorithms for the online $\mathrm{L}^{\natural}$-convex function minimization in two major settings: the full information and the bandit settings. We analyze the regrets of these algorithms and show in particular that our algorithm for the full information setting obtains a tight regret bound up to a constant factor. We also demonstrate several motivating examples that illustrate the usefulness of the online $\mathrm{L}^{\natural}$-convex minimization.


Proactive Dynamic Distributed Constraint Optimization Problems

Journal of Artificial Intelligence Research

The Distributed Constraint Optimization Problem (DCOP) formulation is a powerful tool for modeling multi-agent coordination problems. To solve DCOPs in a dynamic environment, Dynamic DCOPs (D-DCOPs) have been proposed to model the inherent dynamism present in many coordination problems. D-DCOPs solve a sequence of static problems by reacting to changes in the environment as the agents observe them. Such reactive approaches ignore knowledge about future changes of the problem. To overcome this limitation, we introduce Proactive Dynamic DCOPs (PD-DCOPs), a novel formalism to model D-DCOPs in the presence of exogenous uncertainty. In contrast to reactive approaches, PD-DCOPs are able to explicitly model possible changes of the problem and take such information into account when solving the dynamically changing problem in a proactive manner. The additional expressivity of this formalism allows it to model a wider variety of distributed optimization problems. Our work presents both theoretical and practical contributions that advance current dynamic DCOP models: (i) We introduce Proactive Dynamic DCOPs (PD-DCOPs), which explicitly model how the DCOP will change over time; (ii) We develop exact and heuristic algorithms to solve PD-DCOPs in a proactive manner; (iii) We provide theoretical results about the complexity of this new class of DCOPs; and (iv) We empirically evaluate both proactive and reactive algorithms to determine the trade-offs between the two classes. The final contribution is important as our results are the first that identify the characteristics of the problems that the two classes of algorithms excel in.


Weighted Matching Markets with Budget Constraints

Journal of Artificial Intelligence Research

We investigate markets with a set of students on one side and a set of colleges on the other. A student and college can be linked by a weighted contract that defines the student's wage, while a college's budget for hiring students is limited. Stability is a crucial requirement for matching mechanisms to be applied in the real world. A standard stability requirement is coalitional stability, i.e., no pair of a college and group of students has any incentive to deviate. We find that a coalitionally stable matching is not guaranteed to exist, verifying the coalitional stability for a given matching is coNP-complete, and the problem of finding whether a coalitionally stable matching exists in a given market, is SigmaP2-complete: NPNP-complete. Other negative results also hold when blocking coalitions contain at most two students and one college. Given these computational hardness results, we pursue a weaker stability requirement called pairwise stability, where no pair of a college and single student has an incentive to deviate. Unfortunately, a pairwise stable matching is not guaranteed to exist either. Thus, we consider a restricted market called a typed weighted market, in which students are partitioned into types that induce their possible wages. We then design a strategy-proof and Pareto efficient mechanism that works in polynomial-time for computing a pairwise stable matching in typed weighted markets.


A Complexity Approach for Core-Selecting Exchange under Conditionally Lexicographic Preferences

Journal of Artificial Intelligence Research

Core-selection is a crucial property of rules in the literature of resource allocation. It is also desirable, from the perspective of mechanism design, to address the incentive of agents to cheat by misreporting their preferences. This paper investigates the exchange problem where (i) each agent is initially endowed with (possibly multiple) indivisible goods, (ii) agents' preferences are assumed to be conditionally lexicographic, and (iii) side payments are prohibited. We propose an exchange rule called augmented top-trading-cycles (ATTC), based on the original TTC procedure. We first show that ATTC is core-selecting and runs in polynomial time with respect to the number of goods. We then show that finding a beneficial misreport under ATTC is NP-hard. We finally clarify relationship of misreporting with splitting and hiding, two different types of manipulations, under ATTC.


Facility Location Games With Fractional Preferences

AAAI Conferences

In this paper, we propose a fractional preference model for the facility location game with two facilities that serve the similar purpose on a line where each agent has his location information as well as fractional preference to indicate how well they prefer the facilities. The preference for each facility is in the range of [0, L] such that the sum of the preference for all facilities is equal to 1. The utility is measured by subtracting the sum of the cost of both facilities from the total length L where the cost of facilities is defined as the multiplication of the fractional preference and the distance between the agent and the facilities. We first show that the lower bound for the objective of minimizing total cost is at least Ω(n^1/3). Hence, we use the utility function to analyze the agents' satification. Our objective is to place two facilities on [0, L] to maximize the social utility or the minimum utility. For each objective function, we propose deterministic strategy-proof mechanisms. For the objective of maximizing the social utility, we present an optimal deterministic strategy-proof mechanism in the case where agents can only misreport their locations. In the case where agents can only misreport their preferences, we present a 2-approximation deterministic strategy-proof mechanism. Finally, we present a 4-approximation deterministic strategy-proof mechanism and a randomized strategy-proof mechanism with an approximation ratio of 2 where agents can misreport both the preference and location information. Moreover, we also give a lower-bound of 1.06. For the objective of maximizing the minimum utility, we give a lower-bound of 1.5 and present a 2-approximation deterministic strategy-proof mechanism where agents can misreport both the preference and location.


Coalition Structure Generation Utilizing Graphical Representation of Partition Function Games

AAAI Conferences

Forming effective coalition is a central research challenge in AI and multi-agent systems. The Coalition Structure Generation (CSG) problem is well-known as one of major research topics in coalitional games. The CSG problem is to partition a set of agents into coalitions so that the sum of utilities is maximized. This paper studies a CSG problem for partition function games (PFGs), where the value of a coalition differs depending on the formation of other coalitions generated by non-member agents. Traditionally, in PFGs, the input of a coalitional game is a black-box function called a partition function that maps an embedded coalition (a coalition and the coalition structure) to its value. Recently, a novel concise representation scheme called the Partition Decision Trees (PDTs) has been proposed. The PDTs is a graphical representation based on multiple rules. In this paper, we propose new algorithms that can solve a CSG problem by utilizing PDTs representation. More specifically, we modify PDTs representation to effectively handle negative value rules and apply the depth-first branch and bound algorithm. We experimentally show that our algorithm can solve a CSG problem well.


Achieving Sustainable Cooperation in Generalized Prisoner's Dilemma with Observation Errors

AAAI Conferences

A repeated game is a formal model for analyzing cooperation in long-term relationships, e.g., in the prisoner's dilemma. Although the case where each player observes her opponent's action with some observation errors (imperfect private monitoring) is difficult to analyze, a special type of an equilibrium called belief-free equilibrium is identified to make the analysis in private monitoring tractable. However, existing works using a belief-free equilibrium show that cooperative relations can be sustainable only in ideal situations. We deal with a generic problem that can model both the prisoner's dilemma and the team production problem. We examine a situation with an additional action that is dominated by another action. To our surprise, by adding this seemingly irrelevant action, players can achieve sustainable cooperative relations far beyond the ideal situations. More specifically, we identify a class of strategies called one-shot punishment strategy that can constitute a belief-free equilibrium in a wide range of parameters. Moreover, for a two-player case, the obtained welfare matches a theoretical upper bound.


False-Name-Proof Locations of Two Facilities: Economic and Algorithmic Approaches

AAAI Conferences

This paper considers a mechanism design problem for locating two identical facilities on an interval, in which an agent can pretend to be multiple agents. A mechanism selects a pair of locations on the interval according to the declared single-peaked preferences of agents. An agent's utility is determined by the location of the better one (typically the closer to her ideal point). This model can represent various application domains. For example, assume a company is going to release two models of its product line and performs a questionnaire survey in an online forum to determine their detailed specs. Typically, a customer will buy only one model, but she can answer multiple times by logging onto the forum under several email accounts. We first characterize possible outcomes of mechanisms that satisfy false-name-proofness, as well as some mild conditions. By extending the result, we completely characterize the class of false-name-proof mechanisms when locating two facilities on a circle. We then clarify the approximation ratios of the false-name-proof mechanisms on a line metric for the social and maximum costs.