Ying Nian Wu
Learning Non-Convergent Non-Persistent Short-Run MCMC Toward Energy-Based Model
Erik Nijkamp, Mitch Hill, Song-Chun Zhu, Ying Nian Wu
This paper studies a curious phenomenon in learning energy-based model (EBM) using MCMC. In each learning iteration, we generate synthesized examples by running a non-convergent, non-mixing, and non-persistent short-run MCMC toward the current model, always starting from the same initial distribution such as uniform noise distribution, and always running a fixed number of MCMC steps. After generating synthesized examples, we then update the model parameters according to the maximum likelihood learning gradient, as if the synthesized examples are fair samples from the current model. We treat this non-convergent short-run MCMC as a learned generator model or a flow model. We provide arguments for treating the learned non-convergent short-run MCMC as a valid model. We show that the learned short-run MCMC is capable of generating realistic images. More interestingly, unlike traditional EBM or MCMC, the learned short-run MCMC is capable of reconstructing observed images and interpolating between images, like generator or flow models. The code can be found in the Appendix.
Learning Non-Convergent Non-Persistent Short-Run MCMC Toward Energy-Based Model
Erik Nijkamp, Mitch Hill, Song-Chun Zhu, Ying Nian Wu
This paper studies a curious phenomenon in learning energy-based model (EBM) using MCMC. In each learning iteration, we generate synthesized examples by running a non-convergent, non-mixing, and non-persistent short-run MCMC toward the current model, always starting from the same initial distribution such as uniform noise distribution, and always running a fixed number of MCMC steps. After generating synthesized examples, we then update the model parameters according to the maximum likelihood learning gradient, as if the synthesized examples are fair samples from the current model. We treat this non-convergent short-run MCMC as a learned generator model or a flow model. We provide arguments for treating the learned non-convergent short-run MCMC as a valid model. We show that the learned short-run MCMC is capable of generating realistic images. More interestingly, unlike traditional EBM or MCMC, the learned short-run MCMC is capable of reconstructing observed images and interpolating between images, like generator or flow models. The code can be found in the Appendix.
Cooperative Holistic Scene Understanding: Unifying 3D Object, Layout, and Camera Pose Estimation
Siyuan Huang, Siyuan Qi, Yinxue Xiao, Yixin Zhu, Ying Nian Wu, Song-Chun Zhu
Holistic 3D indoor scene understanding refers to jointly recovering the i) object bounding boxes, ii) room layout, and iii) camera pose, all in 3D. The existing methods either are ineffective or only tackle the problem partially. In this paper, we propose an end-to-end model that simultaneously solves all three tasks in realtime given only a single RGB image. The essence of the proposed method is to improve the prediction by i) parametrizing the targets (e.g., 3D boxes) instead of directly estimating the targets, and ii) cooperative training across different modules in contrast to training these modules individually. Specifically, we parametrize the 3D object bounding boxes by the predictions from several modules, i.e., 3D camera pose and object attributes. The proposed method provides two major advantages: i) The parametrization helps maintain the consistency between the 2D image and the 3D world, thus largely reducing the prediction variances in 3D coordinates.