Ying, Lexing
Convergence Analysis of Discrete Diffusion Model: Exact Implementation through Uniformization
Chen, Hongrui, Ying, Lexing
Diffusion models have achieved huge empirical success in data generation tasks. Recently, some efforts have been made to adapt the framework of diffusion models to discrete state space, providing a more natural approach for modeling intrinsically discrete data, such as language and graphs. This is achieved by formulating both the forward noising process and the corresponding reversed process as Continuous Time Markov Chains (CTMCs). In this paper, we investigate the theoretical properties of the discrete diffusion model. Specifically, we introduce an algorithm leveraging the uniformization of continuous Markov chains, implementing transitions on random time points. Under reasonable assumptions on the learning of the discrete score function, we derive Total Variation distance and KL divergence guarantees for sampling from any distribution on a hypercube. Our results align with state-of-the-art achievements for diffusion models in $\mathbb{R}^d$ and further underscore the advantages of discrete diffusion models in comparison to the $\mathbb{R}^d$ setting.
Ensemble-Based Annealed Importance Sampling
Chen, Haoxuan, Ying, Lexing
Sampling from a multimodal distribution is a fundamental and challenging problem in computational science and statistics. Among various approaches proposed for this task, one popular method is Annealed Importance Sampling (AIS). In this paper, we propose an ensemble-based version of AIS by combining it with population-based Monte Carlo methods to improve its efficiency. By keeping track of an ensemble instead of a single particle along some continuation path between the starting distribution and the target distribution, we take advantage of the interaction within the ensemble to encourage the exploration of undiscovered modes. Specifically, our main idea is to utilize either the snooker algorithm or the genetic algorithm used in Evolutionary Monte Carlo. We discuss how the proposed algorithm can be implemented and derive a partial differential equation governing the evolution of the ensemble under the continuous time and mean-field limit. We also test the efficiency of the proposed algorithm on various continuous and discrete distributions.
Understanding the Generalization Benefits of Late Learning Rate Decay
Ren, Yinuo, Ma, Chao, Ying, Lexing
Why do neural networks trained with large learning rates for a longer time often lead to better generalization? In this paper, we delve into this question by examining the relation between training and testing loss in neural networks. Through visualization of these losses, we note that the training trajectory with a large learning rate navigates through the minima manifold of the training loss, finally nearing the neighborhood of the testing loss minimum. Motivated by these findings, we introduce a nonlinear model whose loss landscapes mirror those observed for real neural networks. Upon investigating the training process using SGD on our model, we demonstrate that an extended phase with a large learning rate steers our model towards the minimum norm solution of the training loss, which may achieve near-optimal generalization, thereby affirming the empirically observed benefits of late learning rate decay.
Accelerating Sinkhorn Algorithm with Sparse Newton Iterations
Tang, Xun, Shavlovsky, Michael, Rahmanian, Holakou, Tardini, Elisa, Thekumparampil, Kiran Koshy, Xiao, Tesi, Ying, Lexing
Computing the optimal transport distance between statistical distributions is a fundamental task in machine learning. One remarkable recent advancement is entropic regularization and the Sinkhorn algorithm, which utilizes only matrix scaling and guarantees an approximated solution with near-linear runtime. Despite the success of the Sinkhorn algorithm, its runtime may still be slow due to the potentially large number of iterations needed for convergence. To achieve possibly super-exponential convergence, we present Sinkhorn-Newton-Sparse (SNS), an extension to the Sinkhorn algorithm, by introducing early stopping for the matrix scaling steps and a second stage featuring a Newton-type subroutine. Adopting the variational viewpoint that the Sinkhorn algorithm maximizes a concave Lyapunov potential, we offer the insight that the Hessian matrix of the potential function is approximately sparse. Sparsification of the Hessian results in a fast $O(n^2)$ per-iteration complexity, the same as the Sinkhorn algorithm. In terms of total iteration count, we observe that the SNS algorithm converges orders of magnitude faster across a wide range of practical cases, including optimal transportation between empirical distributions and calculating the Wasserstein $W_1, W_2$ distance of discretized densities. The empirical performance is corroborated by a rigorous bound on the approximate sparsity of the Hessian matrix.
Statistical Spatially Inhomogeneous Diffusion Inference
Ren, Yinuo, Lu, Yiping, Ying, Lexing, Rotskoff, Grant M.
Inferring a diffusion equation from discretely-observed measurements is a statistical challenge of significant importance in a variety of fields, from single-molecule tracking in biophysical systems to modeling financial instruments. Assuming that the underlying dynamical process obeys a $d$-dimensional stochastic differential equation of the form $$\mathrm{d}\boldsymbol{x}_t=\boldsymbol{b}(\boldsymbol{x}_t)\mathrm{d} t+\Sigma(\boldsymbol{x}_t)\mathrm{d}\boldsymbol{w}_t,$$ we propose neural network-based estimators of both the drift $\boldsymbol{b}$ and the spatially-inhomogeneous diffusion tensor $D = \Sigma\Sigma^{T}$ and provide statistical convergence guarantees when $\boldsymbol{b}$ and $D$ are $s$-H\"older continuous. Notably, our bound aligns with the minimax optimal rate $N^{-\frac{2s}{2s+d}}$ for nonparametric function estimation even in the presence of correlation within observational data, which necessitates careful handling when establishing fast-rate generalization bounds. Our theoretical results are bolstered by numerical experiments demonstrating accurate inference of spatially-inhomogeneous diffusion tensors.
Multi-Objective Optimization via Wasserstein-Fisher-Rao Gradient Flow
Ren, Yinuo, Xiao, Tesi, Gangwani, Tanmay, Rangi, Anshuka, Rahmanian, Holakou, Ying, Lexing, Sanyal, Subhajit
Multi-objective optimization (MOO) aims to optimize multiple, possibly conflicting objectives with widespread applications. We introduce a novel interacting particle method for MOO inspired by molecular dynamics simulations. Our approach combines overdamped Langevin and birth-death dynamics, incorporating a "dominance potential" to steer particles toward global Pareto optimality. In contrast to previous methods, our method is able to relocate dominated particles, making it particularly adept at managing Pareto fronts of complicated geometries. Our method is also theoretically grounded as a Wasserstein-Fisher-Rao gradient flow with convergence guarantees. Extensive experiments confirm that our approach outperforms state-of-the-art methods on challenging synthetic and real-world datasets.
Continuous-in-time Limit for Bayesian Bandits
Zhu, Yuhua, Izzo, Zachary, Ying, Lexing
This paper revisits the bandit problem in the Bayesian setting. The Bayesian approach formulates the bandit problem as an optimization problem, and the goal is to find the optimal policy which minimizes the Bayesian regret. One of the main challenges facing the Bayesian approach is that computation of the optimal policy is often intractable, especially when the length of the problem horizon or the number of arms is large. In this paper, we first show that under a suitable rescaling, the Bayesian bandit problem converges toward a continuous Hamilton-Jacobi-Bellman (HJB) equation. The optimal policy for the limiting HJB equation can be explicitly obtained for several common bandit problems, and we give numerical methods to solve the HJB equation when an explicit solution is not available. Based on these results, we propose an approximate Bayes-optimal policy for solving Bayesian bandit problems with large horizons. Our method has the added benefit that its computational cost does not increase as the horizon increases.
Minimax Optimal Kernel Operator Learning via Multilevel Training
Jin, Jikai, Lu, Yiping, Blanchet, Jose, Ying, Lexing
Learning mappings between infinite-dimensional function spaces has achieved empirical success in many disciplines of machine learning, including generative modeling, functional data analysis, causal inference, and multi-agent reinforcement learning. In this paper, we study the statistical limit of learning a Hilbert-Schmidt operator between two infinite-dimensional Sobolev reproducing kernel Hilbert spaces. We establish the information-theoretic lower bound in terms of the Sobolev Hilbert-Schmidt norm and show that a regularization that learns the spectral components below the bias contour and ignores the ones that are above the variance contour can achieve the optimal learning rate. At the same time, the spectral components between the bias and variance contours give us flexibility in designing computationally feasible machine learning algorithms. Based on this observation, we develop a multilevel kernel operator learning algorithm that is optimal when learning linear operators between infinite-dimensional function spaces.
Accelerating Primal-dual Methods for Regularized Markov Decision Processes
Li, Haoya, Yu, Hsiang-fu, Ying, Lexing, Dhillon, Inderjit
Entropy regularized Markov decision processes have been widely used in reinforcement learning. This paper is concerned with the primal-dual formulation of the entropy regularized problems. Standard first-order methods suffer from slow convergence due to the lack of strict convexity and concavity. To address this issue, we first introduce a new quadratically convexified primal-dual formulation. The natural gradient ascent descent of the new formulation enjoys a global convergence guarantee and exponential convergence rate. We also propose a new interpolating metric that further accelerates the convergence significantly. Numerical results are provided to demonstrate the performance of the proposed methods under multiple settings.
Approximate Newton policy gradient algorithms
Li, Haoya, Gupta, Samarth, Yu, Hsiangfu, Ying, Lexing, Dhillon, Inderjit
Policy gradient algorithms have been widely applied to Markov decision processes and reinforcement learning problems in recent years. Regularization with various entropy functions is often used to encourage exploration and improve stability. This paper proposes an approximate Newton method for the policy gradient algorithm with entropy regularization. In the case of Shannon entropy, the resulting algorithm reproduces the natural policy gradient algorithm. For other entropy functions, this method results in brand-new policy gradient algorithms. We prove that all these algorithms enjoy Newton-type quadratic convergence and that the corresponding gradient flow converges globally to the optimal solution. We use synthetic and industrial-scale examples to demonstrate that the proposed approximate Newton method typically converges in single-digit iterations, often orders of magnitude faster than other state-of-the-art algorithms.