Ying, Jiaxi
Time-Varying Graph Learning for Data with Heavy-Tailed Distribution
Javaheri, Amirhossein, Ying, Jiaxi, Palomar, Daniel P., Marvasti, Farokh
Graph models provide efficient tools to capture the underlying structure of data defined over networks. Many real-world network topologies are subject to change over time. Learning to model the dynamic interactions between entities in such networks is known as time-varying graph learning. Current methodology for learning such models often lacks robustness to outliers in the data and fails to handle heavy-tailed distributions, a common feature in many real-world datasets (e.g., financial data). This paper addresses the problem of learning time-varying graph models capable of efficiently representing heavy-tailed data. Unlike traditional approaches, we incorporate graph structures with specific spectral properties to enhance data clustering in our model. Our proposed method, which can also deal with noise and missing values in the data, is based on a stochastic approach, where a non-negative vector auto-regressive (VAR) model captures the variations in the graph and a Student-t distribution models the signal originating from this underlying time-varying graph. We propose an iterative method to learn time-varying graph topologies within a semi-online framework where only a mini-batch of data is used to update the graph. Simulations with both synthetic and real datasets demonstrate the efficacy of our model in analyzing heavy-tailed data, particularly those found in financial markets.
Polynomial Graphical Lasso: Learning Edges from Gaussian Graph-Stationary Signals
Buciulea, Andrei, Ying, Jiaxi, Marques, Antonio G., Palomar, Daniel P.
This paper introduces Polynomial Graphical Lasso (PGL), a new approach to learning graph structures from nodal signals. Our key contribution lies in modeling the signals as Gaussian and stationary on the graph, enabling the development of a graph-learning formulation that combines the strengths of graphical lasso with a more encompassing model. Specifically, we assume that the precision matrix can take any polynomial form of the sought graph, allowing for increased flexibility in modeling nodal relationships. Given the resulting complexity and nonconvexity of the resulting optimization problem, we (i) propose a low-complexity algorithm that alternates between estimating the graph and precision matrices, and (ii) characterize its convergence. We evaluate the performance of PGL through comprehensive numerical simulations using both synthetic and real data, demonstrating its superiority over several alternatives. Overall, this approach presents a significant advancement in graph learning and holds promise for various applications in graph-aware signal analysis and beyond.
Fast Projected Newton-like Method for Precision Matrix Estimation under Total Positivity
Cai, Jian-Feng, Cardoso, Josรฉ Vinรญcius de M., Palomar, Daniel P., Ying, Jiaxi
We study the problem of estimating precision matrices in Gaussian distributions that are multivariate totally positive of order two ($\mathrm{MTP}_2$). The precision matrix in such a distribution is an M-matrix. This problem can be formulated as a sign-constrained log-determinant program. Current algorithms are designed using the block coordinate descent method or the proximal point algorithm, which becomes computationally challenging in high-dimensional cases due to the requirement to solve numerous nonnegative quadratic programs or large-scale linear systems. To address this issue, we propose a novel algorithm based on the two-metric projection method, incorporating a carefully designed search direction and variable partitioning scheme. Our algorithm substantially reduces computational complexity, and its theoretical convergence is established. Experimental results on synthetic and real-world datasets demonstrate that our proposed algorithm provides a significant improvement in computational efficiency compared to the state-of-the-art methods.
Learning Large-Scale MTP$_2$ Gaussian Graphical Models via Bridge-Block Decomposition
Wang, Xiwen, Ying, Jiaxi, Palomar, Daniel P.
This paper studies the problem of learning the large-scale Gaussian graphical models that are multivariate totally positive of order two ($\text{MTP}_2$). By introducing the concept of bridge, which commonly exists in large-scale sparse graphs, we show that the entire problem can be equivalently optimized through (1) several smaller-scaled sub-problems induced by a \emph{bridge-block decomposition} on the thresholded sample covariance graph and (2) a set of explicit solutions on entries corresponding to bridges. From practical aspect, this simple and provable discipline can be applied to break down a large problem into small tractable ones, leading to enormous reduction on the computational complexity and substantial improvements for all existing algorithms. The synthetic and real-world experiments demonstrate that our proposed method presents a significant speed-up compared to the state-of-the-art benchmarks.
Network Topology Inference with Sparsity and Laplacian Constraints
Ying, Jiaxi, Han, Xi, Zhou, Rui, Wang, Xiwen, So, Hing Cheung
We tackle the network topology inference problem by utilizing Laplacian constrained Gaussian graphical models, which recast the task as estimating a precision matrix in the form of a graph Laplacian. Recent research \cite{ying2020nonconvex} has uncovered the limitations of the widely used $\ell_1$-norm in learning sparse graphs under this model: empirically, the number of nonzero entries in the solution grows with the regularization parameter of the $\ell_1$-norm; theoretically, a large regularization parameter leads to a fully connected (densest) graph. To overcome these challenges, we propose a graph Laplacian estimation method incorporating the $\ell_0$-norm constraint. An efficient gradient projection algorithm is developed to solve the resulting optimization problem, characterized by sparsity and Laplacian constraints. Through numerical experiments with synthetic and financial time-series datasets, we demonstrate the effectiveness of the proposed method in network topology inference.
Adaptive Estimation of Graphical Models under Total Positivity
Ying, Jiaxi, Cardoso, Josรฉ Vinรญcius de M., Palomar, Daniel P.
We consider the problem of estimating (diagonally dominant) M-matrices as precision matrices in Gaussian graphical models. These models exhibit intriguing properties, such as the existence of the maximum likelihood estimator with merely two observations for M-matrices \citep{lauritzen2019maximum,slawski2015estimation} and even one observation for diagonally dominant M-matrices \citep{truell2021maximum}. We propose an adaptive multiple-stage estimation method that refines the estimate by solving a weighted $\ell_1$-regularized problem at each stage. Furthermore, we develop a unified framework based on the gradient projection method to solve the regularized problem, incorporating distinct projections to handle the constraints of M-matrices and diagonally dominant M-matrices. A theoretical analysis of the estimation error is provided. Our method outperforms state-of-the-art methods in precision matrix estimation and graph edge identification, as evidenced by synthetic and financial time-series data sets.
Does the $\ell_1$-norm Learn a Sparse Graph under Laplacian Constrained Graphical Models?
Ying, Jiaxi, Cardoso, Josรฉ Vinรญcius de M., Palomar, Daniel P.
We consider the problem of learning a sparse graph under Laplacian constrained Gaussian graphical models. This problem can be formulated as a penalized maximum likelihood estimation of the precision matrix under Laplacian structural constraints. Like in the classical graphical lasso problem, recent works made use of the $\ell_1$-norm regularization with the goal of promoting sparsity in Laplacian structural precision matrix estimation. However, we find that the widely used $\ell_1$-norm is not effective in imposing a sparse solution in this problem. Through empirical evidence, we observe that the number of nonzero graph weights grows with the increase of the regularization parameter. From a theoretical perspective, we prove that a large regularization parameter will surprisingly lead to a fully connected graph. To address this issue, we propose a nonconvex estimation method by solving a sequence of weighted $\ell_1$-norm penalized sub-problems and prove that the statistical error of the proposed estimator matches the minimax lower bound. To solve each sub-problem, we develop a projected gradient descent algorithm that enjoys a linear convergence rate. Numerical experiments involving synthetic and real-world data sets from the recent COVID-19 pandemic and financial stock markets demonstrate the effectiveness of the proposed method. An open source $\mathsf{R}$ package containing the code for all the experiments is available at https://github.com/mirca/sparseGraph.
Structured Graph Learning Via Laplacian Spectral Constraints
Kumar, Sandeep, Ying, Jiaxi, Cardoso, Jos'e Vin'icius de M., Palomar, Daniel P.
Learning a graph with a specific structure is essential for interpretability and identification of the relationships among data. It is well known that structured graph learning from observed samples is an NP-hard combinatorial problem. In this paper, we first show that for a set of important graph families it is possible to convert the structural constraints of structure into eigenvalue constraints of the graph Laplacian matrix. Then we introduce a unified graph learning framework, lying at the integration of the spectral properties of the Laplacian matrix with Gaussian graphical modeling that is capable of learning structures of a large class of graph families. The proposed algorithms are provably convergent and practically amenable for large-scale semi-supervised and unsupervised graph-based learning tasks. Extensive numerical experiments with both synthetic and real data sets demonstrate the effectiveness of the proposed methods. An R package containing code for all the experimental results is available at https://cran.r-project.org/package=spectralGraphTopology.
A Unified Framework for Structured Graph Learning via Spectral Constraints
Kumar, Sandeep, Ying, Jiaxi, Cardoso, Josรฉ Vinรญcius de M., Palomar, Daniel
Graph learning from data represents a canonical problem that has received substantial attention in the literature. However, insufficient work has been done in incorporating prior structural knowledge onto the learning of underlying graphical models from data. Learning a graph with a specific structure is essential for interpretability and identification of the relationships among data. Useful structured graphs include the multi-component graph, bipartite graph, connected graph, sparse graph, and regular graph. In general, structured graph learning is an NP-hard combinatorial problem, therefore, designing a general tractable optimization method is extremely challenging. In this paper, we introduce a unified graph learning framework lying at the integration of Gaussian graphical models and spectral graph theory. To impose a particular structure on a graph, we first show how to formulate the combinatorial constraints as an analytical property of the graph matrix. Then we develop an optimization framework that leverages graph learning with specific structures via spectral constraints on graph matrices. The proposed algorithms are provably convergent, computationally efficient, and practically amenable for numerous graph-based tasks. Extensive numerical experiments with both synthetic and real data sets illustrate the effectiveness of the proposed algorithms. The code for all the simulations is made available as an open source repository.
Hankel Matrix Nuclear Norm Regularized Tensor Completion for $N$-dimensional Exponential Signals
Ying, Jiaxi, Lu, Hengfa, Wei, Qingtao, Cai, Jian-Feng, Guo, Di, Wu, Jihui, Chen, Zhong, Qu, Xiaobo
Signals are generally modeled as a superposition of exponential functions in spectroscopy of chemistry, biology and medical imaging. For fast data acquisition or other inevitable reasons, however, only a small amount of samples may be acquired and thus how to recover the full signal becomes an active research topic. But existing approaches can not efficiently recover $N$-dimensional exponential signals with $N\geq 3$. In this paper, we study the problem of recovering N-dimensional (particularly $N\geq 3$) exponential signals from partial observations, and formulate this problem as a low-rank tensor completion problem with exponential factor vectors. The full signal is reconstructed by simultaneously exploiting the CANDECOMP/PARAFAC structure and the exponential structure of the associated factor vectors. The latter is promoted by minimizing an objective function involving the nuclear norm of Hankel matrices. Experimental results on simulated and real magnetic resonance spectroscopy data show that the proposed approach can successfully recover full signals from very limited samples and is robust to the estimated tensor rank.