Goto

Collaborating Authors

 Ying, Haochao


AnyECG: Foundational Models for Electrocardiogram Analysis

arXiv.org Artificial Intelligence

Electrocardiogram (ECG), a non-invasive and affordable tool for cardiac monitoring, is highly sensitive in detecting acute heart attacks. However, due to the lengthy nature of ECG recordings, numerous machine learning methods have been developed for automated heart disease detection to reduce human workload. Despite these efforts, performance remains suboptimal. A key obstacle is the inherent complexity of ECG data, which includes heterogeneity (e.g., varying sampling rates), high levels of noise, demographic-related pattern shifts, and intricate rhythm-event associations. To overcome these challenges, this paper introduces AnyECG, a foundational model designed to extract robust representations from any real-world ECG data. Specifically, a tailored ECG Tokenizer encodes each fixed-duration ECG fragment into a token and, guided by proxy tasks, converts noisy, continuous ECG features into discrete, compact, and clinically meaningful local rhythm codes. These codes encapsulate basic morphological, frequency, and demographic information (e.g., sex), effectively mitigating signal noise. We further pre-train the AnyECG to learn rhythmic pattern associations across ECG tokens, enabling the capture of cardiac event semantics. By being jointly pre-trained on diverse ECG data sources, AnyECG is capable of generalizing across a wide range of downstream tasks where ECG signals are recorded from various devices and scenarios. Experimental results in anomaly detection, arrhythmia detection, corrupted lead generation, and ultra-long ECG signal analysis demonstrate that AnyECG learns common ECG knowledge from data and significantly outperforms cutting-edge methods in each respective task.


Fair Evaluation of Federated Learning Algorithms for Automated Breast Density Classification: The Results of the 2022 ACR-NCI-NVIDIA Federated Learning Challenge

arXiv.org Artificial Intelligence

The correct interpretation of breast density is important in the assessment of breast cancer risk. AI has been shown capable of accurately predicting breast density, however, due to the differences in imaging characteristics across mammography systems, models built using data from one system do not generalize well to other systems. Though federated learning (FL) has emerged as a way to improve the generalizability of AI without the need to share data, the best way to preserve features from all training data during FL is an active area of research. To explore FL methodology, the breast density classification FL challenge was hosted in partnership with the American College of Radiology, Harvard Medical School's Mass General Brigham, University of Colorado, NVIDIA, and the National Institutes of Health National Cancer Institute. Challenge participants were able to submit docker containers capable of implementing FL on three simulated medical facilities, each containing a unique large mammography dataset. The breast density FL challenge ran from June 15 to September 5, 2022, attracting seven finalists from around the world. The winning FL submission reached a linear kappa score of 0.653 on the challenge test data and 0.413 on an external testing dataset, scoring comparably to a model trained on the same data in a central location.


Personalized Heart Disease Detection via ECG Digital Twin Generation

arXiv.org Artificial Intelligence

Heart diseases rank among the leading causes of global mortality, demonstrating a crucial need for early diagnosis and intervention. Most traditional electrocardiogram (ECG) based automated diagnosis methods are trained at population level, neglecting the customization of personalized ECGs to enhance individual healthcare management. A potential solution to address this limitation is to employ digital twins to simulate symptoms of diseases in real patients. In this paper, we present an innovative prospective learning approach for personalized heart disease detection, which generates digital twins of healthy individuals' anomalous ECGs and enhances the model sensitivity to the personalized symptoms. In our approach, a vector quantized feature separator is proposed to locate and isolate the disease symptom and normal segments in ECG signals with ECG report guidance. Thus, the ECG digital twins can simulate specific heart diseases used to train a personalized heart disease detection model. Experiments demonstrate that our approach not only excels in generating high-fidelity ECG signals but also improves personalized heart disease detection. Moreover, our approach ensures robust privacy protection, safeguarding patient data in model development.


Arithmetic Feature Interaction Is Necessary for Deep Tabular Learning

arXiv.org Artificial Intelligence

Until recently, the question of the effective inductive bias of deep models on tabular data has remained unanswered. This paper investigates the hypothesis that arithmetic feature interaction is necessary for deep tabular learning. To test this point, we create a synthetic tabular dataset with a mild feature interaction assumption and examine a modified transformer architecture enabling arithmetical feature interactions, referred to as AMFormer. Results show that AMFormer outperforms strong counterparts in fine-grained tabular data modeling, data efficiency in training, and generalization. This is attributed to its parallel additive and multiplicative attention operators and prompt-based optimization, which facilitate the separation of tabular samples in an extended space with arithmetically-engineered features. Our extensive experiments on real-world data also validate the consistent effectiveness, efficiency, and rationale of AMFormer, suggesting it has established a strong inductive bias for deep learning on tabular data. Code is available at https://github.com/aigc-apps/AMFormer.


TSegFormer: 3D Tooth Segmentation in Intraoral Scans with Geometry Guided Transformer

arXiv.org Artificial Intelligence

Optical Intraoral Scanners (IOS) are widely used in digital dentistry to provide detailed 3D information of dental crowns and the gingiva. Accurate 3D tooth segmentation in IOSs is critical for various dental applications, while previous methods are error-prone at complicated boundaries and exhibit unsatisfactory results across patients. In this paper, we propose TSegFormer which captures both local and global dependencies among different teeth and the gingiva in the IOS point clouds with a multi-task 3D transformer architecture. Moreover, we design a geometry-guided loss based on a novel point curvature to refine boundaries in an end-to-end manner, avoiding time-consuming post-processing to reach clinically applicable segmentation. In addition, we create a dataset with 16,000 IOSs, the largest ever IOS dataset to the best of our knowledge. The experimental results demonstrate that our TSegFormer consistently surpasses existing state-of-the-art baselines. The superiority of TSegFormer is corroborated by extensive analysis, visualizations and real-world clinical applicability tests.


ME-GAN: Learning Panoptic Electrocardio Representations for Multi-view ECG Synthesis Conditioned on Heart Diseases

arXiv.org Artificial Intelligence

Electrocardiogram (ECG) is a widely used non-invasive diagnostic tool for heart diseases. Many studies have devised ECG analysis models (e.g., classifiers) to assist diagnosis. As an upstream task, researches have built generative models to synthesize ECG data, which are beneficial to providing training samples, privacy protection, and annotation reduction. However, previous generative methods for ECG often neither synthesized multi-view data, nor dealt with heart disease conditions. In this paper, we propose a novel disease-aware generative adversarial network for multi-view ECG synthesis called ME-GAN, which attains panoptic electrocardio representations conditioned on heart diseases and projects the representations onto multiple standard views to yield ECG signals. Since ECG manifestations of heart diseases are often localized in specific waveforms, we propose a new "mixup normalization" to inject disease information precisely into suitable locations. In addition, we propose a view discriminator to revert disordered ECG views into a pre-determined order, supervising the generator to obtain ECG representing correct view characteristics. Besides, a new metric, rFID, is presented to assess the quality of the synthesized ECG signals. Comprehensive experiments verify that our ME-GAN performs well on multi-view ECG signal synthesis with trusty morbid manifestations.


Robust Training of Graph Neural Networks via Noise Governance

arXiv.org Artificial Intelligence

Graph Neural Networks (GNNs) have become widely-used models for semi-supervised learning. However, the robustness of GNNs in the presence of label noise remains a largely under-explored problem. In this paper, we consider an important yet challenging scenario where labels on nodes of graphs are not only noisy but also scarce. In this scenario, the performance of GNNs is prone to degrade due to label noise propagation and insufficient learning. To address these issues, we propose a novel RTGNN (Robust Training of Graph Neural Networks via Noise Governance) framework that achieves better robustness by learning to explicitly govern label noise. More specifically, we introduce self-reinforcement and consistency regularization as supplemental supervision. The self-reinforcement supervision is inspired by the memorization effects of deep neural networks and aims to correct noisy labels. Further, the consistency regularization prevents GNNs from overfitting to noisy labels via mimicry loss in both the inter-view and intra-view perspectives. To leverage such supervisions, we divide labels into clean and noisy types, rectify inaccurate labels, and further generate pseudo-labels on unlabeled nodes. Supervision for nodes with different types of labels is then chosen adaptively. This enables sufficient learning from clean labels while limiting the impact of noisy ones. We conduct extensive experiments to evaluate the effectiveness of our RTGNN framework, and the results validate its consistent superior performance over state-of-the-art methods with two types of label noises and various noise rates.


ASM2TV: An Adaptive Semi-Supervised Multi-Task Multi-View Learning Framework

arXiv.org Artificial Intelligence

Many real-world scenarios, such as human activity recognition (HAR) in IoT, can be formalized as a multi-task multi-view learning problem. Each specific task consists of multiple shared feature views collected from multiple sources, either homogeneous or heterogeneous. Common among recent approaches is to employ a typical hard/soft sharing strategy at the initial phase separately for each view across tasks to uncover common knowledge, underlying the assumption that all views are conditionally independent. On the one hand, multiple views across tasks possibly relate to each other under practical situations. On the other hand, supervised methods might be insufficient when labeled data is scarce. To tackle these challenges, we introduce a novel framework ASM2TV for semi-supervised multi-task multi-view learning. We present a new perspective named gating control policy, a learnable task-view-interacted sharing policy that adaptively selects the most desirable candidate shared block for any view across any task, which uncovers more fine-grained task-view-interacted relatedness and improves inference efficiency. Significantly, our proposed gathering consistency adaption procedure takes full advantage of large amounts of unlabeled fragmented time-series, making it a general framework that accommodates a wide range of applications. Experiments on two diverse real-world HAR benchmark datasets collected from various subjects and sources demonstrate our framework's superiority over other state-of-the-arts.