Yin, Zhong
A Ducted Fan UAV for Safe Aerial Grabbing and Transfer of Multiple Loads Using Electromagnets
Yin, Zhong, Pei, Hailong
In recent years, research on aerial grasping, manipulation, and transportation of objects has garnered significant attention. These tasks often require UAVs to operate safely close to environments or objects and to efficiently grasp payloads. However, current widely adopted flying platforms pose safety hazards: unprotected high-speed rotating propellers can cause harm to the surroundings. Additionally, the space for carrying payloads on the fuselage is limited, and the restricted position of the payload also hinders efficient grasping. To address these issues, this paper presents a coaxial ducted fan UAV which is equipped with electromagnets mounted externally on the fuselage, enabling safe grasping and transfer of multiple loads in midair without complex additional actuators. It also has the capability to achieve direct human-UAV cargo transfer in the air. The forces acting on the loads during magnetic attachment and their influencing factors were analyzed. An ADRC controller is utilized to counteract disturbances during grasping and achieve attitude control. Finally, flight tests are conducted to verify the UAV's ability to directly grasp multiple loads from human hands in flight while maintaining attitude tracking.
SCVCNet: Sliding cross-vector convolution network for cross-task and inter-individual-set EEG-based cognitive workload recognition
Wang, Qi, Chen, Li, Zhan, Zhiyuan, Zhang, Jianhua, Yin, Zhong
This paper presents a generic approach for applying the cognitive workload recognizer by exploiting common electroencephalogram (EEG) patterns across different human-machine tasks and individual sets. We propose a neural network called SCVCNet, which eliminates task- and individual-set-related interferences in EEGs by analyzing finer-grained frequency structures in the power spectral densities. The SCVCNet utilizes a sliding cross-vector convolution (SCVC) operation, where paired input layers representing the theta and alpha power are employed. By extracting the weights from a kernel matrix's central row and column, we compute the weighted sum of the two vectors around a specified scalp location. Next, we introduce an inter-frequency-point feature integration module to fuse the SCVC feature maps. Finally, we combined the two modules with the output-channel pooling and classification layers to construct the model. To train the SCVCNet, we employ the regularized least-square method with ridge regression and the extreme learning machine theory. We validate its performance using three databases, each consisting of distinct tasks performed by independent participant groups. The average accuracy (0.6813 and 0.6229) and F1 score (0.6743 and 0.6076) achieved in two different validation paradigms show partially higher performance than the previous works. All features and algorithms are available on website:https://github.com/7ohnKeats/SCVCNet.
Identification of mental fatigue in language comprehension tasks based on EEG and deep learning
Ye, Chunhua, Yin, Zhong, Wu, Chenxi, Abulaiti, Xiayidai, Zhang, Yixing, Sun, Zhenqi, Zhang, Jianhua
Mental fatigue increases the risk of operator error in language comprehension tasks. In order to prevent operator performance degradation, we used EEG signals to assess the mental fatigue of operators in human-computer systems. This study presents an experimental design for fatigue detection in language comprehension tasks. We obtained EEG signals from a 14-channel wireless EEG detector in 15 healthy participants. Each participant was given a cognitive test of a language comprehension task, in the form of multiple choice questions, in which pronoun references were selected between nominal and surrogate sentences. In this paper, the 2400 EEG fragments collected are divided into three data sets according to different utilization rates, namely 1200s data set with 50% utilization rate, 1500s data set with 62.5% utilization rate, and 1800s data set with 75% utilization rate. In the aspect of feature extraction, different EEG features were extracted, including time domain features, frequency domain features and entropy features, and the effects of different features and feature combinations on classification accuracy were explored. In terms of classification, we introduced the Convolutional Neural Network (CNN) method as the preferred method, It was compared with Least Squares Support Vector Machines(LSSVM),Support Vector Machines(SVM),Logistic Regression (LR), Random Forest(RF), Naive Bayes (NB), K-Nearest Neighbor (KNN) and Decision Tree(DT).According to the results, the classification accuracy of convolutional neural network (CNN) is higher than that of other classification methods. The classification results show that the classification accuracy of 1200S dataset is higher than the other two datasets. The combination of Frequency and entropy feature and CNN has the highest classification accuracy, which is 85.34%.