Goto

Collaborating Authors

 Yin, Yuqi


SciAssess: Benchmarking LLM Proficiency in Scientific Literature Analysis

arXiv.org Artificial Intelligence

Recent breakthroughs in Large Language Models (LLMs) have revolutionized natural language understanding and generation, sparking significant interest in applying them to scientific literature analysis. However, existing benchmarks fail to adequately evaluate the proficiency of LLMs in this domain, particularly in scenarios requiring higher-level abilities beyond mere memorization and the handling of multimodal data. In response to this gap, we introduce SciAssess, a benchmark specifically designed for the comprehensive evaluation of LLMs in scientific literature analysis. SciAssess aims to thoroughly assess the efficacy of LLMs by focusing on their capabilities in Memorization (L1), Comprehension (L2), and Analysis \& Reasoning (L3). It encompasses a variety of tasks drawn from diverse scientific fields, including fundamental science, alloy materials, biomedicine, drug discovery, and organic materials. To ensure the reliability of SciAssess, rigorous quality control measures have been implemented, ensuring accuracy, anonymization, and compliance with copyright standards. SciAssess evaluates 11 LLMs, including GPT, Claude, and Gemini, highlighting their strengths and areas for improvement. This evaluation supports the ongoing development of LLM applications in the analysis of scientific literature. SciAssess and its resources are available at \url{https://sci-assess.github.io/}.


Uni-SMART: Universal Science Multimodal Analysis and Research Transformer

arXiv.org Artificial Intelligence

In scientific research and its application, scientific literature analysis is crucial as it allows researchers to build on the work of others. However, the fast growth of scientific knowledge has led to a massive increase in scholarly articles, making in-depth literature analysis increasingly challenging and time-consuming. The emergence of Large Language Models (LLMs) has offered a new way to address this challenge. Known for their strong abilities in summarizing texts, LLMs are seen as a potential tool to improve the analysis of scientific literature. However, existing LLMs have their own limits. Scientific literature often includes a wide range of multimodal elements, such as tables, charts, and molecule, which are hard for text-focused LLMs to understand and analyze. This issue points to the urgent need for new solutions that can fully understand and analyze multimodal content in scientific literature. To answer this demand, we present \textbf{Uni-SMART} (Universal Science Multimodal Analysis and Research Transformer), an innovative model designed for in-depth understanding of multimodal scientific literature. Through rigorous quantitative evaluation across several domains, Uni-SMART demonstrates superior performance over other text-focused LLMs. Furthermore, our exploration extends to practical applications, including patent infringement detection and nuanced analysis of charts. These applications not only highlight Uni-SMART's adaptability but also its potential to revolutionize how we interact with scientific literature.