Goto

Collaborating Authors

 Yin, Xusen


SoftQE: Learned Representations of Queries Expanded by LLMs

arXiv.org Artificial Intelligence

We investigate the integration of Large Language Models (LLMs) into query encoders to improve dense retrieval without increasing latency and cost, by circumventing the dependency on LLMs at inference time. SoftQE incorporates knowledge from LLMs by mapping embeddings of input queries to those of the LLM-expanded queries. While improvements over various strong baselines on in-domain MS-MARCO metrics are marginal, SoftQE improves performance by 2.83 absolute percentage points on average on five out-of-domain BEIR tasks.


Learning to Generalize for Sequential Decision Making

arXiv.org Artificial Intelligence

We consider problems of making sequences of decisions to accomplish tasks, interacting via the medium of language. These problems are often tackled with reinforcement learning approaches. We find that these models do not generalize well when applied to novel task domains. However, the large amount of computation necessary to adequately train and explore the search space of sequential decision making, under a reinforcement learning paradigm, precludes the inclusion of large contextualized language models, which might otherwise enable the desired generalization ability. We introduce a teacher-student imitation learning methodology and a means of converting a reinforcement learning model into a natural language understanding model. Together, these methodologies enable the introduction of contextualized language models into the sequential decision making problem space. We show that models can learn faster and generalize more, leveraging both the imitation learning and the reformulation. Our models exceed teacher performance on various held-out decision problems, by up to 7% on in-domain problems and 24% on out-of-domain problems.


Learn How to Cook a New Recipe in a New House: Using Map Familiarization, Curriculum Learning, and Common Sense to Learn Families of Text-Based Adventure Games

arXiv.org Artificial Intelligence

We consider the task of learning to play families of text-based computer adventure games, i.e., fully textual environments with a common theme (e.g. cooking) and goal (e.g. prepare a meal from a recipe) but with different specifics; new instances of such games are relatively straightforward for humans to master after a brief exposure to the genre but have been curiously difficult for computer agents to learn. We find that the deep Q-learning strategies that have been successfully leveraged for superhuman performance in single-instance action video games can be applied to learn families of text video games when adopting simple strategies that correlate with human-like learning behavior. Specifically, we build agents that learn to tackle simple scenarios before more complex ones (curriculum learning), that are equipped with the contextualized semantics of BERT (and we demonstrate that this provides a measure of common sense), and that familiarize themselves in an unfamiliar environment by navigating before acting. We demonstrate faster training convergence and improved task completion rates over reasonable baselines.