Not enough data to create a plot.
Try a different view from the menu above.
Yin, Xu-Cheng
FaceSpeak: Expressive and High-Quality Speech Synthesis from Human Portraits of Different Styles
Zhang, Tian-Hao, Zhang, Jiawei, Wang, Jun, Qian, Xinyuan, Yin, Xu-Cheng
Humans can perceive speakers' characteristics (e.g., identity, gender, personality and emotion) by their appearance, which are generally aligned to their voice style. Recently, vision-driven Text-to-speech (TTS) scholars grounded their investigations on real-person faces, thereby restricting effective speech synthesis from applying to vast potential usage scenarios with diverse characters and image styles. To solve this issue, we introduce a novel FaceSpeak approach. It extracts salient identity characteristics and emotional representations from a wide variety of image styles. Meanwhile, it mitigates the extraneous information (e.g., background, clothing, and hair color, etc.), resulting in synthesized speech closely aligned with a character's persona. Furthermore, to overcome the scarcity of multi-modal TTS data, we have devised an innovative dataset, namely Expressive Multi-Modal TTS, which is diligently curated and annotated to facilitate research in this domain. The experimental results demonstrate our proposed FaceSpeak can generate portrait-aligned voice with satisfactory naturalness and quality.
Breaking Through the Spike: Spike Window Decoding for Accelerated and Precise Automatic Speech Recognition
Zhang, Wei, Zhang, Tian-Hao, Luo, Chao, Zhou, Hui, Yang, Chao, Qian, Xinyuan, Yin, Xu-Cheng
Recently, end-to-end automatic speech recognition has become the mainstream approach in both industry and academia. To optimize system performance in specific scenarios, the Weighted Finite-State Transducer (WFST) is extensively used to integrate acoustic and language models, leveraging its capacity to implicitly fuse language models within static graphs, thereby ensuring robust recognition while also facilitating rapid error correction. However, WFST necessitates a frame-by-frame search of CTC posterior probabilities through autoregression, which significantly hampers inference speed. In this work, we thoroughly investigate the spike property of CTC outputs and further propose the conjecture that adjacent frames to non-blank spikes carry semantic information beneficial to the model. Building on this, we propose the Spike Window Decoding algorithm, which greatly improves the inference speed by making the number of frames decoded in WFST linearly related to the number of spiking frames in the CTC output, while guaranteeing the recognition performance. Our method achieves SOTA recognition accuracy with significantly accelerates decoding speed, proven across both AISHELL-1 and large-scale In-House datasets, establishing a pioneering approach for integrating CTC output with WFST.
HA-FGOVD: Highlighting Fine-grained Attributes via Explicit Linear Composition for Open-Vocabulary Object Detection
Ma, Yuqi, Liu, Mengyin, Zhu, Chao, Yin, Xu-Cheng
Open-vocabulary object detection (OVD) models are considered to be Large Multi-modal Models (LMM), due to their extensive training data and a large number of parameters. Mainstream OVD models prioritize object coarse-grained category rather than focus on their fine-grained attributes, e.g., colors or materials, thus failed to identify objects specified with certain attributes. However, OVD models are pretrained on large-scale image-text pairs with rich attribute words, whose latent feature space can represent the global text feature as a linear composition of fine-grained attribute tokens without highlighting them. Therefore, we propose in this paper a universal and explicit approach for frozen mainstream OVD models that boosts their attribute-level detection capabilities by highlighting fine-grained attributes in explicit linear space. Firstly, a LLM is leveraged to highlight attribute words within the input text as a zero-shot prompted task. Secondly, by strategically adjusting the token masks, the text encoders of OVD models extract both global text and attribute-specific features, which are then explicitly composited as two vectors in linear space to form the new attribute-highlighted feature for detection tasks, where corresponding scalars are hand-crafted or learned to reweight both two vectors. Notably, these scalars can be seamlessly transferred among different OVD models, which proves that such an explicit linear composition is universal. Empirical evaluation on the FG-OVD dataset demonstrates that our proposed method uniformly improves fine-grained attribute-level OVD of various mainstream models and achieves new state-of-the-art performance.
Arbitrary Time Information Modeling via Polynomial Approximation for Temporal Knowledge Graph Embedding
Fang, Zhiyu, Qin, Jingyan, Zhu, Xiaobin, Yang, Chun, Yin, Xu-Cheng
Distinguished from traditional knowledge graphs (KGs), temporal knowledge graphs (TKGs) must explore and reason over temporally evolving facts adequately. However, existing TKG approaches still face two main challenges, i.e., the limited capability to model arbitrary timestamps continuously and the lack of rich inference patterns under temporal constraints. In this paper, we propose an innovative TKGE method (PTBox) via polynomial decomposition-based temporal representation and box embedding-based entity representation to tackle the above-mentioned problems. Specifically, we decompose time information by polynomials and then enhance the model's capability to represent arbitrary timestamps flexibly by incorporating the learnable temporal basis tensor. In addition, we model every entity as a hyperrectangle box and define each relation as a transformation on the head and tail entity boxes. The entity boxes can capture complex geometric structures and learn robust representations, improving the model's inductive capability for rich inference patterns. Theoretically, our PTBox can encode arbitrary time information or even unseen timestamps while capturing rich inference patterns and higher-arity relations of the knowledge base. Extensive experiments on real-world datasets demonstrate the effectiveness of our method.
Transformer-based Reasoning for Learning Evolutionary Chain of Events on Temporal Knowledge Graph
Fang, Zhiyu, Lei, Shuai-Long, Zhu, Xiaobin, Yang, Chun, Zhang, Shi-Xue, Yin, Xu-Cheng, Qin, Jingyan
Temporal Knowledge Graph (TKG) reasoning often involves completing missing factual elements along the timeline. Although existing methods can learn good embeddings for each factual element in quadruples by integrating temporal information, they often fail to infer the evolution of temporal facts. This is mainly because of (1) insufficiently exploring the internal structure and semantic relationships within individual quadruples and (2) inadequately learning a unified representation of the contextual and temporal correlations among different quadruples. To overcome these limitations, we propose a novel Transformer-based reasoning model (dubbed ECEformer) for TKG to learn the Evolutionary Chain of Events (ECE). Specifically, we unfold the neighborhood subgraph of an entity node in chronological order, forming an evolutionary chain of events as the input for our model. Subsequently, we utilize a Transformer encoder to learn the embeddings of intra-quadruples for ECE. We then craft a mixed-context reasoning module based on the multi-layer perceptron (MLP) to learn the unified representations of inter-quadruples for ECE while accomplishing temporal knowledge reasoning. In addition, to enhance the timeliness of the events, we devise an additional time prediction task to complete effective temporal information within the learned unified representation. Extensive experiments on six benchmark datasets verify the state-of-the-art performance and the effectiveness of our method.
InterFormer: Interactive Local and Global Features Fusion for Automatic Speech Recognition
Lai, Zhi-Hao, Zhang, Tian-Hao, Liu, Qi, Qian, Xinyuan, Wei, Li-Fang, Chen, Song-Lu, Chen, Feng, Yin, Xu-Cheng
The local and global features are both essential for automatic speech recognition (ASR). Many recent methods have verified that simply combining local and global features can further promote ASR performance. However, these methods pay less attention to the interaction of local and global features, and their series architectures are rigid to reflect local and global relationships. To address these issues, this paper proposes InterFormer for interactive local and global features fusion to learn a better representation for ASR. Specifically, we combine the convolution block with the transformer block in a parallel design. Besides, we propose a bidirectional feature interaction module (BFIM) and a selective fusion module (SFM) to implement the interaction and fusion of local and global features, respectively. Extensive experiments on public ASR datasets demonstrate the effectiveness of our proposed InterFormer and its superior performance over the other Transformer and Conformer models.
Rethinking Speech Recognition with A Multimodal Perspective via Acoustic and Semantic Cooperative Decoding
Zhang, Tian-Hao, Qin, Hai-Bo, Lai, Zhi-Hao, Chen, Song-Lu, Liu, Qi, Chen, Feng, Qian, Xinyuan, Yin, Xu-Cheng
Attention-based encoder-decoder (AED) models have shown impressive performance in ASR. However, most existing AED methods neglect to simultaneously leverage both acoustic and semantic features in decoder, which is crucial for generating more accurate and informative semantic states. In this paper, we propose an Acoustic and Semantic Cooperative Decoder (ASCD) for ASR. In particular, unlike vanilla decoders that process acoustic and semantic features in two separate stages, ASCD integrates them cooperatively. To prevent information leakage during training, we design a Causal Multimodal Mask. Moreover, a variant Semi-ASCD is proposed to balance accuracy and computational cost. Our proposal is evaluated on the publicly available AISHELL-1 and aidatatang_200zh datasets using Transformer, Conformer, and Branchformer as encoders, respectively. The experimental results show that ASCD significantly improves the performance by leveraging both the acoustic and semantic information cooperatively.
VLPD: Context-Aware Pedestrian Detection via Vision-Language Semantic Self-Supervision
Liu, Mengyin, Jiang, Jie, Zhu, Chao, Yin, Xu-Cheng
Detecting pedestrians accurately in urban scenes is significant for realistic applications like autonomous driving or video surveillance. However, confusing human-like objects often lead to wrong detections, and small scale or heavily occluded pedestrians are easily missed due to their unusual appearances. To address these challenges, only object regions are inadequate, thus how to fully utilize more explicit and semantic contexts becomes a key problem. Meanwhile, previous context-aware pedestrian detectors either only learn latent contexts with visual clues, or need laborious annotations to obtain explicit and semantic contexts. Therefore, we propose in this paper a novel approach via Vision-Language semantic self-supervision for context-aware Pedestrian Detection (VLPD) to model explicitly semantic contexts without any extra annotations. Firstly, we propose a self-supervised Vision-Language Semantic (VLS) segmentation method, which learns both fully-supervised pedestrian detection and contextual segmentation via self-generated explicit labels of semantic classes by vision-language models. Furthermore, a self-supervised Prototypical Semantic Contrastive (PSC) learning method is proposed to better discriminate pedestrians and other classes, based on more explicit and semantic contexts obtained from VLS. Extensive experiments on popular benchmarks show that our proposed VLPD achieves superior performances over the previous state-of-the-arts, particularly under challenging circumstances like small scale and heavy occlusion. Code is available at https://github.com/lmy98129/VLPD.
RUArt: A Novel Text-Centered Solution for Text-Based Visual Question Answering
Jin, Zan-Xia, Wu, Heran, Yang, Chun, Zhou, Fang, Qin, Jingyan, Xiao, Lei, Yin, Xu-Cheng
Text-based visual question answering (VQA) requires to read and understand text in an image to correctly answer a given question. However, most current methods simply add optical character recognition (OCR) tokens extracted from the image into the VQA model without considering contextual information of OCR tokens and mining the relationships between OCR tokens and scene objects. In this paper, we propose a novel text-centered method called RUArt (Reading, Understanding and Answering the Related Text) for text-based VQA. Taking an image and a question as input, RUArt first reads the image and obtains text and scene objects. Then, it understands the question, OCRed text and objects in the context of the scene, and further mines the relationships among them. Finally, it answers the related text for the given question through text semantic matching and reasoning. We evaluate our RUArt on two text-based VQA benchmarks (ST-VQA and TextVQA) and conduct extensive ablation studies for exploring the reasons behind RUArt's effectiveness. Experimental results demonstrate that our method can effectively explore the contextual information of the text and mine the stable relationships between the text and objects.