Yin, Xiaoting
EgoEvGesture: Gesture Recognition Based on Egocentric Event Camera
Wang, Luming, Shi, Hao, Yin, Xiaoting, Yang, Kailun, Wang, Kaiwei
-- Egocentric gesture recognition is a pivotal technology for enhancing natural human-computer interaction, yet traditional RGB-based solutions suffer from motion blur and illumination variations in dynamic scenarios. While event cameras show distinct advantages in handling high dynamic range with ultra-low power consumption, existing RGB-based architectures face inherent limitations in processing asynchronous event streams due to their synchronous frame-based nature. Moreover, from an egocentric perspective, event cameras record data that includes events generated by both head movements and hand gestures, thereby increasing the complexity of gesture recognition. T o address this, we propose a novel network architecture specifically designed for event data processing, incorporating (1) a lightweight CNN with asymmetric depthwise convolutions to reduce parameters while preserving spatiotemporal features, (2) a plug-and-play state-space model as context block that decouples head movement noise from gesture dynamics, and (3) a parameter-free Bins-T emporal Shift Module (BSTM) that shifts features along bins and temporal dimensions to fuse sparse events efficiently. We further establish the EgoEvGesture dataset, the first large-scale dataset for egocentric gesture recognition using event cameras. Experimental results demonstrate that our method achieves 62.7% accuracy tested on unseen subjects with only 7M parameters, 3.1% higher than state-of-the-art approaches. Notable misclassifications in freestyle motions stem from high interpersonal variability and unseen test patterns differing from training data. Moreover, our approach achieved a remarkable accuracy of 97.0% on the DVS128 Gesture, demonstrating the effectiveness and generalization capability of our method on public datasets.
Event-aided Semantic Scene Completion
Guo, Shangwei, Shi, Hao, Wang, Song, Yin, Xiaoting, Yang, Kailun, Wang, Kaiwei
Autonomous driving systems rely on robust 3D scene understanding. Recent advances in Semantic Scene Completion (SSC) for autonomous driving underscore the limitations of RGB-based approaches, which struggle under motion blur, poor lighting, and adverse weather. Event cameras, offering high dynamic range and low latency, address these challenges by providing asynchronous data that complements RGB inputs. We present DSEC-SSC, the first real-world benchmark specifically designed for event-aided SSC, which includes a novel 4D labeling pipeline for generating dense, visibility-aware labels that adapt dynamically to object motion. Our proposed RGB-Event fusion framework, EvSSC, introduces an Event-aided Lifting Module (ELM) that effectively bridges 2D RGB-Event features to 3D space, enhancing view transformation and the robustness of 3D volume construction across SSC models. Extensive experiments on DSEC-SSC and simulated SemanticKITTI-E demonstrate that EvSSC is adaptable to both transformer-based and LSS-based SSC architectures. Notably, evaluations on SemanticKITTI-C demonstrate that EvSSC achieves consistently improved prediction accuracy across five degradation modes and both In-domain and Out-of-domain settings, achieving up to a 52.5% relative improvement in mIoU when the image sensor partially fails. Additionally, we quantitatively and qualitatively validate the superiority of EvSSC under motion blur and extreme weather conditions, where autonomous driving is challenged. The established datasets and our codebase will be made publicly at https://github.com/Pandapan01/EvSSC.
E-3DGS: Gaussian Splatting with Exposure and Motion Events
Yin, Xiaoting, Shi, Hao, Bao, Yuhan, Bing, Zhenshan, Liao, Yiyi, Yang, Kailun, Wang, Kaiwei
Estimating Neural Radiance Fields (NeRFs) from images captured under optimal conditions has been extensively explored in the vision community. However, robotic applications often face challenges such as motion blur, insufficient illumination, and high computational overhead, which adversely affect downstream tasks like navigation, inspection, and scene visualization. To address these challenges, we propose E-3DGS, a novel event-based approach that partitions events into motion (from camera or object movement) and exposure (from camera exposure), using the former to handle fast-motion scenes and using the latter to reconstruct grayscale images for high-quality training and optimization of event-based 3D Gaussian Splatting (3DGS). We introduce a novel integration of 3DGS with exposure events for high-quality reconstruction of explicit scene representations. Our versatile framework can operate on motion events alone for 3D reconstruction, enhance quality using exposure events, or adopt a hybrid mode that balances quality and effectiveness by optimizing with initial exposure events followed by high-speed motion events. We also introduce EME-3D, a real-world 3D dataset with exposure events, motion events, camera calibration parameters, and sparse point clouds. Our method is faster and delivers better reconstruction quality than event-based NeRF while being more cost-effective than NeRF methods that combine event and RGB data by using a single event sensor. By combining motion and exposure events, E-3DGS sets a new benchmark for event-based 3D reconstruction with robust performance in challenging conditions and lower hardware demands. The source code and dataset will be available at https://github.com/MasterHow/E-3DGS.
Towards Precise 3D Human Pose Estimation with Multi-Perspective Spatial-Temporal Relational Transformers
Jiao, Jianbin, Cheng, Xina, Chen, Weijie, Yin, Xiaoting, Shi, Hao, Yang, Kailun
3D human pose estimation captures the human joint points in three-dimensional space while keeping the depth information and physical structure. That is essential for applications that require precise pose information, such as human-computer interaction, scene understanding, and rehabilitation training. Due to the challenges in data collection, mainstream datasets of 3D human pose estimation are primarily composed of multi-view video data collected in laboratory environments, which contains rich spatial-temporal correlation information besides the image frame content. Given the remarkable self-attention mechanism of transformers, capable of capturing the spatial-temporal correlation from multi-view video datasets, we propose a multi-stage framework for 3D sequence-to-sequence (seq2seq) human pose detection. Firstly, the spatial module represents the human pose feature by intra-image content, while the frame-image relation module extracts temporal relationships and 3D spatial positional relationship features between the multi-perspective images. Secondly, the self-attention mechanism is adopted to eliminate the interference from non-human body parts and reduce computing resources. Our method is evaluated on Human3.6M, a popular 3D human pose detection dataset. Experimental results demonstrate that our approach achieves state-of-the-art performance on this dataset.
Rethinking Event-based Human Pose Estimation with 3D Event Representations
Yin, Xiaoting, Shi, Hao, Chen, Jiaan, Wang, Ze, Ye, Yaozu, Ni, Huajian, Yang, Kailun, Wang, Kaiwei
Human pose estimation is a fundamental and appealing task in computer vision. Traditional frame-based cameras and videos are commonly applied, yet, they become less reliable in scenarios under high dynamic range or heavy motion blur. In contrast, event cameras offer a robust solution for navigating these challenging contexts. Predominant methodologies incorporate event cameras into learning frameworks by accumulating events into event frames. However, such methods tend to marginalize the intrinsic asynchronous and high temporal resolution characteristics of events. This disregard leads to a loss in essential temporal dimension data, crucial for discerning distinct actions. To address this issue and to unlock the 3D potential of event information, we introduce two 3D event representations: the Rasterized Event Point Cloud (RasEPC) and the Decoupled Event Voxel (DEV). The RasEPC collates events within concise temporal slices at identical positions, preserving 3D attributes with statistical cues and markedly mitigating memory and computational demands. Meanwhile, the DEV representation discretizes events into voxels and projects them across three orthogonal planes, utilizing decoupled event attention to retrieve 3D cues from the 2D planes. Furthermore, we develop and release EV-3DPW, a synthetic event-based dataset crafted to facilitate training and quantitative analysis in outdoor scenes. On the public real-world DHP19 dataset, our event point cloud technique excels in real-time mobile predictions, while the decoupled event voxel method achieves the highest accuracy. Experiments on EV-3DPW demonstrate that the robustness of our proposed 3D representation methods compared to traditional RGB images and event frame techniques under the same backbones. Our code and dataset have been made publicly available at https://github.com/MasterHow/EventPointPose.
Towards Anytime Optical Flow Estimation with Event Cameras
Ye, Yaozu, Shi, Hao, Yang, Kailun, Wang, Ze, Yin, Xiaoting, Lin, Yining, Liu, Mao, Wang, Yaonan, Wang, Kaiwei
Optical flow estimation is a fundamental task in the field of autonomous driving. Event cameras are capable of responding to log-brightness changes in microseconds. Its characteristic of producing responses only to the changing region is particularly suitable for optical flow estimation. In contrast to the super low-latency response speed of event cameras, existing datasets collected via event cameras, however, only provide limited frame rate optical flow ground truth, (e.g., at 10Hz), greatly restricting the potential of event-driven optical flow. To address this challenge, we put forward a high-frame-rate, low-latency event representation Unified Voxel Grid, sequentially fed into the network bin by bin. We then propose EVA-Flow, an EVent-based Anytime Flow estimation network to produce high-frame-rate event optical flow with only low-frame-rate optical flow ground truth for supervision. The key component of our EVA-Flow is the stacked Spatiotemporal Motion Refinement (SMR) module, which predicts temporally dense optical flow and enhances the accuracy via spatial-temporal motion refinement. The time-dense feature warping utilized in the SMR module provides implicit supervision for the intermediate optical flow. Additionally, we introduce the Rectified Flow Warp Loss (RFWL) for the unsupervised evaluation of intermediate optical flow in the absence of ground truth. This is, to the best of our knowledge, the first work focusing on anytime optical flow estimation via event cameras. A comprehensive variety of experiments on MVSEC, DESC, and our EVA-FlowSet demonstrates that EVA-Flow achieves competitive performance, super-low-latency (5ms), fastest inference (9.2ms), time-dense motion estimation (200Hz), and strong generalization. Our code will be available at https://github.com/Yaozhuwa/EVA-Flow.
PanoFlow: Learning 360{\deg} Optical Flow for Surrounding Temporal Understanding
Shi, Hao, Zhou, Yifan, Yang, Kailun, Yin, Xiaoting, Wang, Ze, Ye, Yaozu, Yin, Zhe, Meng, Shi, Li, Peng, Wang, Kaiwei
Optical flow estimation is a basic task in self-driving and robotics systems, which enables to temporally interpret traffic scenes. Autonomous vehicles clearly benefit from the ultra-wide Field of View (FoV) offered by 360{\deg} panoramic sensors. However, due to the unique imaging process of panoramic cameras, models designed for pinhole images do not directly generalize satisfactorily to 360{\deg} panoramic images. In this paper, we put forward a novel network framework--PanoFlow, to learn optical flow for panoramic images. To overcome the distortions introduced by equirectangular projection in panoramic transformation, we design a Flow Distortion Augmentation (FDA) method, which contains radial flow distortion (FDA-R) or equirectangular flow distortion (FDA-E). We further look into the definition and properties of cyclic optical flow for panoramic videos, and hereby propose a Cyclic Flow Estimation (CFE) method by leveraging the cyclicity of spherical images to infer 360{\deg} optical flow and converting large displacement to relatively small displacement. PanoFlow is applicable to any existing flow estimation method and benefits from the progress of narrow-FoV flow estimation. In addition, we create and release a synthetic panoramic dataset FlowScape based on CARLA to facilitate training and quantitative analysis. PanoFlow achieves state-of-the-art performance on the public OmniFlowNet and the established FlowScape benchmarks. Our proposed approach reduces the End-Point-Error (EPE) on FlowScape by 27.3%. On OmniFlowNet, PanoFlow achieves a 55.5% error reduction from the best published result. We also qualitatively validate our method via a collection vehicle and a public real-world OmniPhotos dataset, indicating strong potential and robustness for real-world navigation applications. Code and dataset are publicly available at https://github.com/MasterHow/PanoFlow.