Yin, Weichong
Orthogonal Finetuning for Direct Preference Optimization
Yang, Chenxu, Jia, Ruipeng, Gu, Naibin, Lin, Zheng, Chen, Siyuan, Pang, Chao, Yin, Weichong, Sun, Yu, Wu, Hua, Wang, Weiping
DPO is an effective preference optimization algorithm. However, the DPO-tuned models tend to overfit on the dispreferred samples, manifested as overly long generations lacking diversity. While recent regularization approaches have endeavored to alleviate this issue by modifying the objective function, they achieved that at the cost of alignment performance degradation. In this paper, we innovatively incorporate regularization from the perspective of weight updating to curb alignment overfitting. Through the pilot experiment, we discovered that there exists a positive correlation between overfitting and the hyperspherical energy fluctuation. Hence, we introduce orthogonal finetuning for DPO via a weight-Rotated Preference Optimization (RoPO) method, which merely conducts rotational and magnitude-stretching updates on the weight parameters to maintain the hyperspherical energy invariant, thereby preserving the knowledge encoded in the angle between neurons. Extensive experiments demonstrate that our model aligns perfectly with human preferences while retaining the original expressive capacity using only 0.0086% of the trainable parameters, suggesting an effective regularization against overfitting. Specifically, RoPO outperforms DPO by up to 10 points on MT-Bench and by up to 2.8 points on AlpacaEval 2, while enhancing the generation diversity by an average of 6 points.
ERNIE-ViLG 2.0: Improving Text-to-Image Diffusion Model with Knowledge-Enhanced Mixture-of-Denoising-Experts
Feng, Zhida, Zhang, Zhenyu, Yu, Xintong, Fang, Yewei, Li, Lanxin, Chen, Xuyi, Lu, Yuxiang, Liu, Jiaxiang, Yin, Weichong, Feng, Shikun, Sun, Yu, Chen, Li, Tian, Hao, Wu, Hua, Wang, Haifeng
Recent progress in diffusion models has revolutionized the popular technology of text-to-image generation. While existing approaches could produce photorealistic high-resolution images with text conditions, there are still several open problems to be solved, which limits the further improvement of image fidelity and text relevancy. In this paper, we propose ERNIE-ViLG 2.0, a large-scale Chinese text-to-image diffusion model, to progressively upgrade the quality of generated images by: (1) incorporating fine-grained textual and visual knowledge of key elements in the scene, and (2) utilizing different denoising experts at different denoising stages. With the proposed mechanisms, ERNIE-ViLG 2.0 not only achieves a new state-of-the-art on MS-COCO with zero-shot FID score of 6.75, but also significantly outperforms recent models in terms of image fidelity and image-text alignment, with side-by-side human evaluation on the bilingual prompt set ViLG-300.