Goto

Collaborating Authors

 Yin, Shenglin


MMGDreamer: Mixed-Modality Graph for Geometry-Controllable 3D Indoor Scene Generation

arXiv.org Artificial Intelligence

Controllable 3D scene generation has extensive applications in virtual reality and interior design, where the generated scenes should exhibit high levels of realism and controllability in terms of geometry. Scene graphs provide a suitable data representation that facilitates these applications. However, current graph-based methods for scene generation are constrained to text-based inputs and exhibit insufficient adaptability to flexible user inputs, hindering the ability to precisely control object geometry. To address this issue, we propose MMGDreamer, a dual-branch diffusion model for scene generation that incorporates a novel Mixed-Modality Graph, visual enhancement module, and relation predictor. The mixed-modality graph allows object nodes to integrate textual and visual modalities, with optional relationships between nodes. It enhances adaptability to flexible user inputs and enables meticulous control over the geometry of objects in the generated scenes. The visual enhancement module enriches the visual fidelity of text-only nodes by constructing visual representations using text embeddings. Furthermore, our relation predictor leverages node representations to infer absent relationships between nodes, resulting in more coherent scene layouts. Extensive experimental results demonstrate that MMGDreamer exhibits superior control of object geometry, achieving state-of-the-art scene generation performance. Project page: https://yangzhifeio.github.io/project/MMGDreamer.


$M^3EL$: A Multi-task Multi-topic Dataset for Multi-modal Entity Linking

arXiv.org Artificial Intelligence

Multi-modal Entity Linking (MEL) is a fundamental component for various downstream tasks. However, existing MEL datasets suffer from small scale, scarcity of topic types and limited coverage of tasks, making them incapable of effectively enhancing the entity linking capabilities of multi-modal models. To address these obstacles, we propose a dataset construction pipeline and publish $M^3EL$, a large-scale dataset for MEL. $M^3EL$ includes 79,625 instances, covering 9 diverse multi-modal tasks, and 5 different topics. In addition, to further improve the model's adaptability to multi-modal tasks, We propose a modality-augmented training strategy. Utilizing $M^3EL$ as a corpus, train the $\textit{CLIP}_{\textit{ND}}$ model based on $\textit{CLIP} (\textit{ViT}-\textit{B}-\textit{32})$, and conduct a comparative analysis with an existing multi-modal baselines. Experimental results show that the existing models perform far below expectations (ACC of 49.4%-75.8%), After analysis, it was obtained that small dataset sizes, insufficient modality task coverage, and limited topic diversity resulted in poor generalisation of multi-modal models. Our dataset effectively addresses these issues, and the $\textit{CLIP}_{\textit{ND}}$ model fine-tuned with $M^3EL$ shows a significant improvement in accuracy, with an average improvement of 9.3% to 25% across various tasks. Our dataset is available at https://anonymous.4open.science/r/M3EL.