Yin, Lianhao
Towards Cooperative Flight Control Using Visual-Attention
Yin, Lianhao, Chahine, Makram, Wang, Tsun-Hsuan, Seyde, Tim, Liu, Chao, Lechner, Mathias, Hasani, Ramin, Rus, Daniela
The cooperation of a human pilot with an autonomous agent during flight control realizes parallel autonomy. We propose an air-guardian system that facilitates cooperation between a pilot with eye tracking and a parallel end-to-end neural control system. Our vision-based air-guardian system combines a causal continuous-depth neural network model with a cooperation layer to enable parallel autonomy between a pilot and a control system based on perceived differences in their attention profiles. The attention profiles for neural networks are obtained by computing the networks' saliency maps (feature importance) through the VisualBackProp algorithm, while the attention profiles for humans are either obtained by eye tracking of human pilots or saliency maps of networks trained to imitate human pilots. When the attention profile of the pilot and guardian agents align, the pilot makes control decisions. Otherwise, the air-guardian makes interventions and takes over the control of the aircraft. We show that our attention-based air-guardian system can balance the trade-off between its level of involvement in the flight and the pilot's expertise and attention. The guardian system is particularly effective in situations where the pilot was distracted due to information overload. We demonstrate the effectiveness of our method for navigating flight scenarios in simulation with a fixed-wing aircraft and on hardware with a quadrotor platform.
Deep Reinforcement Learning Based Tracking Control of an Autonomous Surface Vessel in Natural Waters
Wang, Wei, Cao, Xiaojing, Gonzalez-Garcia, Alejandro, Yin, Lianhao, Hagemann, Niklas, Qiao, Yuanyuan, Ratti, Carlo, Rus, Daniela
Accurate control of autonomous marine robots still poses challenges due to the complex dynamics of the environment. In this paper, we propose a Deep Reinforcement Learning (DRL) approach to train a controller for autonomous surface vessel (ASV) trajectory tracking and compare its performance with an advanced nonlinear model predictive controller (NMPC) in real environments. Taking into account environmental disturbances (e.g., wind, waves, and currents), noisy measurements, and non-ideal actuators presented in the physical ASV, several effective reward functions for DRL tracking control policies are carefully designed. The control policies were trained in a simulation environment with diverse tracking trajectories and disturbances. The performance of the DRL controller has been verified and compared with the NMPC in both simulations with model-based environmental disturbances and in natural waters. Simulations show that the DRL controller has 53.33% lower tracking error than that of NMPC. Experimental results further show that, compared to NMPC, the DRL controller has 35.51% lower tracking error, indicating that DRL controllers offer better disturbance rejection in river environments than NMPC.